These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 28970168)
1. Proteolytic activation of Bacillus thuringiensis Vip3Aa protein by Spodoptera exigua midgut protease. Zhang J; Pan ZZ; Xu L; Liu B; Chen Z; Li J; Niu LY; Zhu YJ; Chen QX Int J Biol Macromol; 2018 Feb; 107(Pt A):1220-1226. PubMed ID: 28970168 [TBL] [Abstract][Full Text] [Related]
2. Proteolytic Activation of Bacillus thuringiensis Cry2Ab through a Belt-and-Braces Approach. Xu L; Pan ZZ; Zhang J; Liu B; Zhu YJ; Chen QX J Agric Food Chem; 2016 Sep; 64(38):7195-200. PubMed ID: 27598769 [TBL] [Abstract][Full Text] [Related]
3. Oligomer Formation and Insecticidal Activity of Shao E; Zhang A; Yan Y; Wang Y; Jia X; Sha L; Guan X; Wang P; Huang Z Toxins (Basel); 2020 Apr; 12(4):. PubMed ID: 32340293 [No Abstract] [Full Text] [Related]
4. Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Song F; Lin Y; Chen C; Shao E; Guan X; Huang Z J Microbiol Biotechnol; 2016 Oct; 26(10):1774-1780. PubMed ID: 27435544 [TBL] [Abstract][Full Text] [Related]
5. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. Chakroun M; Bel Y; Caccia S; Abdelkefi-Mesrati L; Escriche B; Ferré J J Invertebr Pathol; 2012 Jul; 110(3):334-9. PubMed ID: 22465567 [TBL] [Abstract][Full Text] [Related]
6. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. Caccia S; Chakroun M; Vinokurov K; Ferré J J Insect Physiol; 2014 Aug; 67():76-84. PubMed ID: 24979528 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation. Song F; Chen C; Wu S; Shao E; Li M; Guan X; Huang Z Sci Rep; 2016 Mar; 6():23861. PubMed ID: 27025647 [TBL] [Abstract][Full Text] [Related]
8. Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Herrero S; González-Cabrera J; Ferré J; Bakker PL; de Maagd RA Biochem J; 2004 Dec; 384(Pt 3):507-13. PubMed ID: 15320864 [TBL] [Abstract][Full Text] [Related]
9. Antagonistic Effect of Truncated Fragments of Boonyos P; Trakulnalueamsai C; Rungrod A; Chongthammakun S; Promdonkoy B Protein Pept Lett; 2021; 28(2):131-139. PubMed ID: 32586243 [TBL] [Abstract][Full Text] [Related]
10. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. Crava CM; Jakubowska AK; Escriche B; Herrero S; Bel Y PLoS One; 2015; 10(5):e0125991. PubMed ID: 25993013 [TBL] [Abstract][Full Text] [Related]
11. Functional characterization of Vip3Aa from Bacillus thuringiensis reveals the contributions of specific domains to its insecticidal activity. Jiang K; Chen Z; Zang Y; Shi Y; Shang C; Jiao X; Cai J; Gao X J Biol Chem; 2023 Mar; 299(3):103000. PubMed ID: 36764522 [TBL] [Abstract][Full Text] [Related]
12. Vip3Aa domain IV and V mutants confer higher insecticidal activity against Spodoptera frugiperda and Helicoverpa armigera. Yang X; Wang Z; Geng L; Chi B; Liu R; Li H; Gao J; Zhang J Pest Manag Sci; 2022 Jun; 78(6):2324-2331. PubMed ID: 35243758 [TBL] [Abstract][Full Text] [Related]
13. Scavenger receptor-C acts as a receptor for Bacillus thuringiensis vegetative insecticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis. Jiang K; Hou XY; Tan TT; Cao ZL; Mei SQ; Yan B; Chang J; Han L; Zhao D; Cai J PLoS Pathog; 2018 Oct; 14(10):e1007347. PubMed ID: 30286203 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of the susceptibility/tolerance of Spodoptera littoralis to Vip3Aa, Vip3Ae, Vip3Ad and Vip3Af toxins of Bacillus thuringiensis. Boukedi H; Ben Khedher S; Abdelkefi-Mesrati L; Van Rie J; Tounsi S J Invertebr Pathol; 2018 Feb; 152():30-34. PubMed ID: 29378203 [TBL] [Abstract][Full Text] [Related]
15. Artefactual band patterns by SDS-PAGE of the Vip3Af protein in the presence of proteases mask the extremely high stability of this protein. Banyuls N; Hernández-Martínez P; Quan Y; Ferré J Int J Biol Macromol; 2018 Dec; 120(Pt A):59-65. PubMed ID: 30120972 [TBL] [Abstract][Full Text] [Related]
16. Mapping of the entomocidal fragment of Spodoptera-specific Bacillus thuringiensis toxin CryIC. Strizhov N; Keller M; Koncz-Kálmán Z; Regev A; Sneh B; Schell J; Koncz C; Zilberstein A Mol Gen Genet; 1996 Nov; 253(1-2):11-9. PubMed ID: 9003281 [TBL] [Abstract][Full Text] [Related]
17. Utilization of a strong promoter combined with the knockout of protease genes to improve the yield of Vip3Aa in Bacillus thuringiensis BMB171. Li X; Zhang Y; Zhan Y; Tian H; Yan B; Cai J Pest Manag Sci; 2023 May; 79(5):1713-1720. PubMed ID: 36622044 [TBL] [Abstract][Full Text] [Related]
18. Intracellular localization and cytotoxicity of Bacillus thuringiensis Vip3Aa against Spodoptera frugiperda (Sf9) cells. Nimsanor S; Srisaisup M; Jammor P; Promdonkoy B; Boonserm P J Invertebr Pathol; 2020 Mar; 171():107340. PubMed ID: 32044359 [TBL] [Abstract][Full Text] [Related]
19. Structural and functional role of Domain I for the insecticidal activity of the Vip3Aa protein from Bacillus thuringiensis. Lázaro-Berenguer M; Paredes-Martínez F; Bel Y; Núñez-Ramírez R; Arias-Palomo E; Casino P; Ferré J Microb Biotechnol; 2022 Oct; 15(10):2607-2618. PubMed ID: 35830334 [TBL] [Abstract][Full Text] [Related]
20. Receptor interactions of protoxin and activated Vip3Aa structural conformations in Spodoptera exigua. Lázaro-Berenguer M; Ferré J; Hernández-Martínez P Pest Manag Sci; 2024 Dec; 80(12):6142-6149. PubMed ID: 39123331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]