These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 28970222)
1. Disruption of a Transcriptional Repressor by an Insertion Sequence Element Integration Leads to Activation of a Novel Silent Cellobiose Transporter in Lactococcus lactis MG1363. Solopova A; Kok J; Kuipers OP Appl Environ Microbiol; 2017 Dec; 83(23):. PubMed ID: 28970222 [No Abstract] [Full Text] [Related]
2. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403. Kowalczyk M; Cocaign-Bousquet M; Loubiere P; Bardowski J Arch Microbiol; 2008 Mar; 189(3):187-96. PubMed ID: 17909747 [TBL] [Abstract][Full Text] [Related]
3. The Lcn972 bacteriocin-encoding plasmid pBL1 impairs cellobiose metabolism in Lactococcus lactis. Campelo AB; Gaspar P; Roces C; Rodríguez A; Kok J; Kuipers OP; Neves AR; Martínez B Appl Environ Microbiol; 2011 Nov; 77(21):7576-85. PubMed ID: 21890668 [TBL] [Abstract][Full Text] [Related]
6. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis. Kilstrup M; Martinussen J J Bacteriol; 1998 Aug; 180(15):3907-16. PubMed ID: 9683488 [TBL] [Abstract][Full Text] [Related]
7. A specific mutation in the promoter region of the silent cel cluster accounts for the appearance of lactose-utilizing Lactococcus lactis MG1363. Solopova A; Bachmann H; Teusink B; Kok J; Neves AR; Kuipers OP Appl Environ Microbiol; 2012 Aug; 78(16):5612-21. PubMed ID: 22660716 [TBL] [Abstract][Full Text] [Related]
8. Genetic characterization of the CcpA-dependent, cellobiose-specific PTS system comprising CelB, PtcB and PtcA that transports lactose in Lactococcus lactis IL1403. Aleksandrzak-Piekarczyk T; Polak J; Jezierska B; Renault P; Bardowski J Int J Food Microbiol; 2011 Jan; 145(1):186-94. PubMed ID: 21262549 [TBL] [Abstract][Full Text] [Related]
9. Osmoregulation in Lactococcus lactis: BusR, a transcriptional repressor of the glycine betaine uptake system BusA. Romeo Y; Obis D; Bouvier J; Guillot A; Fourçans A; Bouvier I; Gutierrez C; Mistou MY Mol Microbiol; 2003 Feb; 47(4):1135-47. PubMed ID: 12581365 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional regulation of fatty acid biosynthesis in Lactococcus lactis. Eckhardt TH; Skotnicka D; Kok J; Kuipers OP J Bacteriol; 2013 Mar; 195(5):1081-9. PubMed ID: 23275247 [TBL] [Abstract][Full Text] [Related]
11. The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Defoor E; Kryger MB; Martinussen J Microbiology (Reading); 2007 Nov; 153(Pt 11):3645-3659. PubMed ID: 17975072 [TBL] [Abstract][Full Text] [Related]
12. Alternative lactose catabolic pathway in Lactococcus lactis IL1403. Aleksandrzak-Piekarczyk T; Kok J; Renault P; Bardowski J Appl Environ Microbiol; 2005 Oct; 71(10):6060-9. PubMed ID: 16204522 [TBL] [Abstract][Full Text] [Related]
13. Molecular description and industrial potential of Tn6098 conjugative transfer conferring alpha-galactoside metabolism in Lactococcus lactis. Machielsen R; Siezen RJ; van Hijum SA; van Hylckama Vlieg JE Appl Environ Microbiol; 2011 Jan; 77(2):555-63. PubMed ID: 21115709 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional activation of the citrate permease P gene of Lactococcus lactis biovar diacetylactis by an insertion sequence-like element present in plasmid pCIT264. López de Felipe F; Magni C; de Mendoza D; López P Mol Gen Genet; 1996 Mar; 250(4):428-36. PubMed ID: 8602160 [TBL] [Abstract][Full Text] [Related]
15. Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. Linares DM; Kok J; Poolman B J Bacteriol; 2010 Nov; 192(21):5806-12. PubMed ID: 20639323 [TBL] [Abstract][Full Text] [Related]
16. A natural large chromosomal inversion in Lactococcus lactis is mediated by homologous recombination between two insertion sequences. Daveran-Mingot ML; Campo N; Ritzenthaler P; Le Bourgeois P J Bacteriol; 1998 Sep; 180(18):4834-42. PubMed ID: 9733685 [TBL] [Abstract][Full Text] [Related]
17. Tolerance to high osmolality of Lactococcus lactis subsp. lactis and cremoris is related to the activity of a betaine transport system. Obis D; Guillot A; Mistou MY FEMS Microbiol Lett; 2001 Aug; 202(1):39-44. PubMed ID: 11506905 [TBL] [Abstract][Full Text] [Related]
18. Exopolysaccharide expression in Lactococcus lactis subsp. cremoris Ropy352: evidence for novel gene organization. Knoshaug EP; Ahlgren JA; Trempy JE Appl Environ Microbiol; 2007 Feb; 73(3):897-905. PubMed ID: 17122391 [TBL] [Abstract][Full Text] [Related]
19. Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis. Ladero V; Rattray FP; Mayo B; Martín MC; Fernández M; Alvarez MA Appl Environ Microbiol; 2011 Sep; 77(18):6409-18. PubMed ID: 21803900 [TBL] [Abstract][Full Text] [Related]
20. Transposition of IS10R in Lactococcus lactis. Kjos M; Straume D; Nes IF; Diep DB J Appl Microbiol; 2009 Jan; 106(1):288-95. PubMed ID: 19120617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]