BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28970541)

  • 1. Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells.
    Parashar PK; Komarala VK
    Sci Rep; 2017 Oct; 7(1):12520. PubMed ID: 28970541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance-Enhanced Textured Silicon Solar Cells Based on Plasmonic Light Scattering Using Silver and Indium Nanoparticles.
    Ho WJ; Su SY; Lee YY; Syu HJ; Lin CF
    Materials (Basel); 2015 Sep; 8(10):6668-6676. PubMed ID: 28793591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient plasmonic scattering of colloidal silver particles through annealing-induced changes.
    Ott A; Ring S; Yin G; Calvet W; Stannowski B; Schlatmann R; Ballauff M
    Nanotechnology; 2014 Nov; 25(45):455706. PubMed ID: 25338823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical and optical performance of plasmonic silicon solar cells based on light scattering of silver and indium nanoparticles in matrix-combination.
    Ho WJ; Lee YY; Hu CH; Wang WL
    Opt Express; 2016 Aug; 24(16):17900-9. PubMed ID: 27505757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells.
    Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J
    Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current enhancement of aluminum doped ZnO/n-Si isotype heterojunction solar cells by embedding silver nanoparticles.
    Yun J; Kim J; Kojori HS; Kim SJ; Tong C; Anderson WA
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5547-51. PubMed ID: 23882792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors.
    Morawiec S; Mendes MJ; Filonovich SA; Mateus T; Mirabella S; Aguas H; Ferreira I; Simone F; Fortunato E; Martins R; Priolo F; Crupi I
    Opt Express; 2014 Jun; 22 Suppl 4():A1059-70. PubMed ID: 24978069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles.
    Ho WJ; Lee YY; Su SY
    Nanoscale Res Lett; 2014; 9(1):483. PubMed ID: 25258606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Photovoltaic Performance of Plasmonic Silicon Solar Cells with ITO Nanoparticles Dispersed in SiO
    Ho WJ; Chen GY; Liu JJ
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31100917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles.
    Tan H; Santbergen R; Smets AH; Zeman M
    Nano Lett; 2012 Aug; 12(8):4070-6. PubMed ID: 22738234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband responsivity enhancement of Si photodiodes by a plasmonic antireflection bilayer.
    Park J; Kang IS; Sim G; Kim TH; Lee JK
    Opt Express; 2021 Aug; 29(17):26634-26644. PubMed ID: 34615094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near field and far field plasmonic enhancements with bilayers of different dimensions AgNPs@DLC for improved current density in silicon solar.
    Hekmat M; Shafiekhani A; Khabir M
    Sci Rep; 2022 Nov; 12(1):19663. PubMed ID: 36385272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures.
    Pandey P; Kunwar S; Sui M; Bastola S; Lee J
    Nanoscale Res Lett; 2018 May; 13(1):151. PubMed ID: 29767305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Gold-Silver Rough-Surface Nanoparticles on Plasmonic Light Scattering in Organic Solar Cells.
    Tran QN; Lee HK; Kim JH; Park SJ
    J Nanosci Nanotechnol; 2020 Jan; 20(1):304-311. PubMed ID: 31383171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application.
    Morawiec S; Holovský J; Mendes MJ; Müller M; Ganzerová K; Vetushka A; Ledinský M; Priolo F; Fejfar A; Crupi I
    Sci Rep; 2016 Mar; 6():22481. PubMed ID: 26935322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D/3D graphene on h-BN interlayer-silicon solar cell with ZnO:Al buffer layer and enormous light captivation using Au/Ag NPs.
    Jabeen M; Haxha S
    Opt Express; 2020 Apr; 28(9):12709-12728. PubMed ID: 32403763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?
    Yang L; Pillai S; Green MA
    Sci Rep; 2015 Jul; 5():11852. PubMed ID: 26138405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser-textured silicon surfaces.
    Yang L; Li X; Tuo X; Van Nguyen TT; Luo X; Hong M
    Opt Express; 2011 Jul; 19 Suppl 4():A657-63. PubMed ID: 21747532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001) by the systematic control of composition, annealing temperature and time.
    Pandey P; Kunwar S; Sui M; Bastola S; Lee J
    PLoS One; 2017; 12(12):e0189823. PubMed ID: 29253017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.