These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28970542)

  • 41. γ-Fe₂O₃ Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage.
    Tian LL; Zhang MJ; Wu C; Wei Y; Zheng JX; Lin LP; Lu J; Amine K; Zhuang QC; Pan F
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26284-90. PubMed ID: 26548376
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction.
    Yoshimatsu K; Niwa M; Mashiko H; Oshima T; Ohtomo A
    Sci Rep; 2015 Nov; 5():16325. PubMed ID: 26541508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of tetrahedral LiFeO2 and its behavior as a cathode in rechargeable lithium batteries.
    Armstrong AR; Tee DW; La Mantia F; Novák P; Bruce PG
    J Am Chem Soc; 2008 Mar; 130(11):3554-9. PubMed ID: 18284239
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.
    Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D
    ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes.
    Hu J; Sun CF; Gillette E; Gui Z; Wang Y; Lee SB
    Nanoscale; 2016 Jul; 8(26):12958-69. PubMed ID: 27304986
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Layered perovskite LiEuTiO4 as a 0.8 V lithium intercalation electrode.
    Huang J; Yang K; Zhang Z; Yang L; Hirano SI
    Chem Commun (Camb); 2017 Jul; 53(55):7800-7803. PubMed ID: 28653063
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Understanding Li diffusion in Li-intercalation compounds.
    Van der Ven A; Bhattacharya J; Belak AA
    Acc Chem Res; 2013 May; 46(5):1216-25. PubMed ID: 22584006
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrochemical Intercalation of Lithium Ions into NbSe2 Nanosheets.
    Hitz E; Wan J; Patel A; Xu Y; Meshi L; Dai J; Chen Y; Lu A; Davydov AV; Hu L
    ACS Appl Mater Interfaces; 2016 May; 8(18):11390-5. PubMed ID: 27100021
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 53. K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries.
    Li Q; Li G; Fu C; Luo D; Fan J; Li L
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10330-41. PubMed ID: 24971575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.
    Marinova DM; Kukeva RR; Zhecheva EN; Stoyanova RK
    Phys Chem Chem Phys; 2018 May; 20(18):12755-12766. PubMed ID: 29697732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unravelling the Structure and Electrochemical Performance of Li-Cr-Mn-O Cathodes: From Spinel to Layered.
    Li X; Li D; Song D; Shi X; Tang X; Zhang H; Zhang L
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8827-8835. PubMed ID: 29470046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes.
    Dogan F; Long BR; Croy JR; Gallagher KG; Iddir H; Russell JT; Balasubramanian M; Key B
    J Am Chem Soc; 2015 Feb; 137(6):2328-35. PubMed ID: 25634302
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hollow Ball-in-Ball CoxFe3-xO4 Nanostructures: High-Performance Anode Materials for Lithium-Ion Battery.
    Shen L; Song H; Yang G; Wang C
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11063-8. PubMed ID: 25978150
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application.
    Kumar A; Reddy AL; Mukherjee A; Dubey M; Zhan X; Singh N; Ci L; Billups WE; Nagurny J; Mital G; Ajayan PM
    ACS Nano; 2011 Jun; 5(6):4345-9. PubMed ID: 21609023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding structural stability of monoclinic LiMnO2 and NaMnO2 upon de-intercalation.
    Tian M; Gao Y; Wang Z; Chen L
    Phys Chem Chem Phys; 2016 Jul; 18(26):17345-50. PubMed ID: 27315463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.