BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28970579)

  • 1. A genome-wide structure-based survey of nucleotide binding proteins in M. tuberculosis.
    Bhagavat R; Kim HB; Kim CY; Terwilliger TC; Mehta D; Srinivasan N; Chandra N
    Sci Rep; 2017 Oct; 7(1):12489. PubMed ID: 28970579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural annotation of Mycobacterium tuberculosis proteome.
    Anand P; Sankaran S; Mukherjee S; Yeturu K; Laskowski R; Bhardwaj A; Bhagavat R; ; Brahmachari SK; Chandra N
    PLoS One; 2011; 6(10):e27044. PubMed ID: 22073123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome-wide subtractive approach to prioritize a hypothetical protein of XDR-Mycobacterium tuberculosis as potential drug target.
    Uddin R; Siddiqui QN; Sufian M; Azam SS; Wadood A
    Genes Genomics; 2019 Nov; 41(11):1281-1292. PubMed ID: 31388979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Annotation of the Mycobacterium tuberculosis Proteome.
    Chandra N; Sandhya S; Anand P
    Microbiol Spectr; 2014 Apr; 2(2):. PubMed ID: 26105824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common recognition principles across diverse sequence and structural families of sialic acid binding proteins.
    Bhagavat R; Chandra N
    Glycobiology; 2014 Jan; 24(1):5-16. PubMed ID: 24043392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterium tuberculosis UsfX (Rv3287c) exhibits novel nucleotide binding and hydrolysis properties.
    Malik SS; Luthra A; Srivastava SK; Ramachandran R
    Biochem Biophys Res Commun; 2008 Oct; 375(3):465-70. PubMed ID: 18722345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis.
    Xie L; Wang X; Zeng J; Zhou M; Duan X; Li Q; Zhang Z; Luo H; Pang L; Li W; Liao G; Yu X; Li Y; Huang H; Xie J
    Int J Biochem Cell Biol; 2015 Feb; 59():193-202. PubMed ID: 25456444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome scale identification, structural analysis, and classification of periplasmic binding proteins from Mycobacterium tuberculosis.
    Sandhu P; Kumari M; Naini K; Akhter Y
    Curr Genet; 2017 Jun; 63(3):553-576. PubMed ID: 27858159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chemical proteomics approach to profiling the ATP-binding proteome of Mycobacterium tuberculosis.
    Wolfe LM; Veeraraghavan U; Idicula-Thomas S; Schürer S; Wennerberg K; Reynolds R; Besra GS; Dobos KM
    Mol Cell Proteomics; 2013 Jun; 12(6):1644-60. PubMed ID: 23462205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis.
    Raman K; Yeturu K; Chandra N
    BMC Syst Biol; 2008 Dec; 2():109. PubMed ID: 19099550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites.
    Bhagavat R; Srinivasan N; Chandra N
    Proteins; 2017 Sep; 85(9):1699-1712. PubMed ID: 28547747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional, structural and epitopic prediction of hypothetical proteins of Mycobacterium tuberculosis H37Rv: An in silico approach for prioritizing the targets.
    Gazi MA; Kibria MG; Mahfuz M; Islam MR; Ghosh P; Afsar MN; Khan MA; Ahmed T
    Gene; 2016 Oct; 591(2):442-55. PubMed ID: 27374154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-wide discovery and characterizations of nucleotide-binding proteins with affinity-labeled chemical probes.
    Xiao Y; Guo L; Jiang X; Wang Y
    Anal Chem; 2013 Mar; 85(6):3198-206. PubMed ID: 23413923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach.
    Uddin R; Siddiqui QN; Azam SS; Saima B; Wadood A
    Eur J Pharm Sci; 2018 Mar; 114():13-23. PubMed ID: 29174549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.
    Mészáros B; Tóth J; Vértessy BG; Dosztányi Z; Simon I
    PLoS Comput Biol; 2011 Jul; 7(7):e1002118. PubMed ID: 21814507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-level multi-scale approach to study essential genes in Mycobacterium tuberculosis.
    Ghosh S; Baloni P; Mukherjee S; Anand P; Chandra N
    BMC Syst Biol; 2013 Dec; 7():132. PubMed ID: 24308365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis.
    Cui T; Zhang L; Wang X; He ZG
    BMC Genomics; 2009 Mar; 10():118. PubMed ID: 19298676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research.
    Bell C; Smith GT; Sweredoski MJ; Hess S
    J Proteome Res; 2012 Jan; 11(1):119-30. PubMed ID: 22053987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the pocketome of Mycobacterium tuberculosis and application in rationalizing polypharmacological target selection.
    Anand P; Chandra N
    Sci Rep; 2014 Sep; 4():6356. PubMed ID: 25220818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interplay of protein-ligand and water-mediated interactions shape affinity and selectivity in the LAO binding protein.
    Vergara R; Romero-Romero S; Velázquez-López I; Espinoza-Pérez G; Rodríguez-Hernández A; Pulido NO; Sosa-Peinado A; Rodríguez-Romero A; Fernández-Velasco DA
    FEBS J; 2020 Feb; 287(4):763-782. PubMed ID: 31348608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.