These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2897061)

  • 1. Biochemical pathways in prokaryotes can be traced backward through evolutionary time.
    Jensen RA
    Mol Biol Evol; 1985 Mar; 2(2):92-108. PubMed ID: 2897061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution and phylogenetic distribution of the specialized isozymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase in superfamily-B prokaryotes.
    Jensen RA; Ahmad S
    Microbiol Sci; 1988 Oct; 5(10):316-9. PubMed ID: 2908556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New prospects for deducing the evolutionary history of metabolic pathways in prokaryotes: aromatic biosynthesis as a case-in-point.
    Ahmad S; Jensen RA
    Orig Life Evol Biosph; 1988; 18(1-2):41-57. PubMed ID: 3368218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria.
    Byng GS; Johnson JL; Whitaker RJ; Gherna RL; Jensen RA
    J Mol Evol; 1983; 19(3-4):272-82. PubMed ID: 6887268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Evolutionary sequence of biological oxygen toxicity protection, respiration and oxygen evolving photosynthesis in prokaryotes--a question of evolutionary trees presented by Schwartz and Dayhoff (author's transl)].
    Higuchi M
    Seikagaku; 1978; 50(6):426-9. PubMed ID: 681804
    [No Abstract]   [Full Text] [Related]  

  • 6. Gaining and losing the thermophilic adaptation in prokaryotes.
    Puigbò P; Pasamontes A; Garcia-Vallve S
    Trends Genet; 2008 Jan; 24(1):10-4. PubMed ID: 18054113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Counterselection of prokaryotic ribosomal RNA during reverse transcription using non-random hexameric oligonucleotides.
    Gonzalez JM; Robb FT
    J Microbiol Methods; 2007 Dec; 71(3):288-91. PubMed ID: 17961767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The prokaryote-eukaryote interface.
    Hunt LT; George DG; Barker WC
    Biosystems; 1985; 18(3-4):223-40. PubMed ID: 3910132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prokaryotic tree of life: past, present... and future?
    McInerney JO; Cotton JA; Pisani D
    Trends Ecol Evol; 2008 May; 23(5):276-81. PubMed ID: 18367290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the concept of lineage in prokaryotes: a phylogenetic perspective.
    Boucher Y; Bapteste E
    Bioessays; 2009 May; 31(5):526-36. PubMed ID: 19319912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations between genomic GC levels and optimal growth temperatures in prokaryotes.
    Musto H; Naya H; Zavala A; Romero H; Alvarez-Valín F; Bernardi G
    FEBS Lett; 2004 Aug; 573(1-3):73-7. PubMed ID: 15327978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A backward view from 16S rRNA to archaea to the universal tree of life to progenotes: reminiscences of Carl Woese.
    Garrett RA
    RNA Biol; 2014; 11(3):232-5. PubMed ID: 24607972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The alignment of sets of sequences and the construction of phyletic trees: an integrated method.
    Hogeweg P; Hesper B
    J Mol Evol; 1984; 20(2):175-86. PubMed ID: 6433036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of whole prokaryotic phylogeny by the development of a random extraction method.
    Saruhashi S; Hamada K; Horiike T; Shinozawa T
    Gene; 2007 May; 392(1-2):157-63. PubMed ID: 17275216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The correct phylogenetic relationship of KdsA (3-deoxy-d-manno-octulosonate 8-phosphate synthase) with one of two independently evolved classes of AroA (3-deoxy-d-arabino-heptulosonate 7-phosphate synthase).
    Jensen RA; Xie G; Calhoun DH; Bonner CA
    J Mol Evol; 2002 Mar; 54(3):416-23. PubMed ID: 11847568
    [No Abstract]   [Full Text] [Related]  

  • 16. Evolutionary distances between nucleotide sequences based on the distribution of substitution rates among sites as estimated by parsimony.
    Tourasse NJ; Gouy M
    Mol Biol Evol; 1997 Mar; 14(3):287-98. PubMed ID: 9066796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial origin of plant-type 2-keto-3-deoxy-D-arabino-heptulosonate 7-phosphate synthases, exemplified by the chorismate- and tryptophan-regulated enzyme from Xanthomonas campestris.
    Gosset G; Bonner CA; Jensen RA
    J Bacteriol; 2001 Jul; 183(13):4061-70. PubMed ID: 11395471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs.
    Dong JH; Wen JF; Tian HF
    Gene; 2007 Jul; 396(1):116-24. PubMed ID: 17449198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of lateral gene transfer events in the prokaryotic tRNA synthetases by the ratios of evolutionary distances method.
    Farahi K; Pusch GD; Overbeek R; Whitman WB
    J Mol Evol; 2004 May; 58(5):615-31. PubMed ID: 15170264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Copy number of ribosomal operons in prokaryotes and its effect on phylogenic analyses].
    Turova TP
    Mikrobiologiia; 2003; 72(4):437-52. PubMed ID: 14526531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.