These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 28970870)

  • 1. Development and applications of transparent conductive nanocellulose paper.
    Li S; Lee PS
    Sci Technol Adv Mater; 2017; 18(1):620-633. PubMed ID: 28970870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Transparent Conducting Nanopaper for Solid State Foldable Electrochromic Devices.
    Kang W; Lin MF; Chen J; Lee PS
    Small; 2016 Dec; 12(46):6370-6377. PubMed ID: 27689677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly transparent and flexible nanopaper transistors.
    Huang J; Zhu H; Chen Y; Preston C; Rohrbach K; Cumings J; Hu L
    ACS Nano; 2013 Mar; 7(3):2106-13. PubMed ID: 23350951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropatterning Silver Nanowire Networks on Cellulose Nanopaper for Transparent Paper Electronics.
    Kim D; Ko Y; Kwon G; Kim UJ; You J
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38517-38525. PubMed ID: 30360060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally Conductive, Electrical Insulating, Optically Transparent Bi-Layer Nanopaper.
    Zhou L; Yang Z; Luo W; Han X; Jang SH; Dai J; Yang B; Hu L
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28838-28843. PubMed ID: 27704759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Hydrophobicity in Nanocellulose-Based Materials: Toward Green Wearable Devices.
    Fingolo AC; de Morais VB; Costa SV; Corrêa CC; Lodi B; Santhiago M; Bernardes JS; Bufon CCB
    ACS Appl Bio Mater; 2021 Sep; 4(9):6682-6689. PubMed ID: 35006971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible, highly transparent and iridescent all-cellulose hybrid nanopaper with enhanced mechanical strength and writable surface.
    Xiong R; Han Y; Wang Y; Zhang W; Zhang X; Lu C
    Carbohydr Polym; 2014 Nov; 113():264-71. PubMed ID: 25256484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs.
    Song Y; Jiang Y; Shi L; Cao S; Feng X; Miao M; Fang J
    Nanoscale; 2015 Aug; 7(32):13694-701. PubMed ID: 26214378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose Nanopaper: Fabrication, Functionalization, and Applications.
    Liu W; Liu K; Du H; Zheng T; Zhang N; Xu T; Pang B; Zhang X; Si C; Zhang K
    Nanomicro Lett; 2022 Apr; 14(1):104. PubMed ID: 35416525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lab-on-nanopaper: An optical sensing bioplatform based on curcumin embedded in bacterial nanocellulose as an albumin assay kit.
    Naghdi T; Golmohammadi H; Vosough M; Atashi M; Saeedi I; Maghsoudi MT
    Anal Chim Acta; 2019 Sep; 1070():104-111. PubMed ID: 31103163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of Nanocellulose from Different Biomass Resources and Its Integration for Hydrophobic Transparent Nanopaper.
    Qi Y; Zhang H; Xu D; He Z; Pan X; Gui S; Dai X; Fan J; Dong X; Li Y
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31935878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites - A review.
    Agate S; Joyce M; Lucia L; Pal L
    Carbohydr Polym; 2018 Oct; 198():249-260. PubMed ID: 30092997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopaper as an Optical Sensing Platform.
    Morales-Narváez E; Golmohammadi H; Naghdi T; Yousefi H; Kostiv U; Horák D; Pourreza N; Merkoçi A
    ACS Nano; 2015 Jul; 9(7):7296-305. PubMed ID: 26135050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocellulose-graphene composites: Preparation and applications in flexible electronics.
    Yang H; Zheng H; Duan Y; Xu T; Xie H; Du H; Si C
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126903. PubMed ID: 37714239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-Temperature Fabrication of High-Performance Amorphous In-Ga-Zn-O/Al
    Ning H; Zeng Y; Kuang Y; Zheng Z; Zhou P; Yao R; Zhang H; Bao W; Chen G; Fang Z; Peng J
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27792-27800. PubMed ID: 28767216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent Zinc-Mesh Electrodes for Solar-Charging Electrochromic Windows.
    Li H; Zhang W; Elezzabi AY
    Adv Mater; 2020 Oct; 32(43):e2003574. PubMed ID: 32954551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels.
    Yu H; Tian Y; Dirican M; Fang D; Yan C; Xie J; Jia D; Liu Y; Li C; Cui M; Liu H; Chen G; Zhang X; Tao J
    Carbohydr Polym; 2021 Dec; 273():118539. PubMed ID: 34560951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication.
    Kasuga T; Isobe N; Yagyu H; Koga H; Nogi M
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29439544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding Conductive Ink Initiatively and Strongly: Transparent and Thermally Stable Cellulose Nanopaper as a Promising Substrate for Flexible Electronics.
    Yu H; Fang D; Dirican M; Wang R; Tian Y; Chen L; Liu H; Wang J; Tang F; Asiri AM; Zhang X; Tao J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20281-20290. PubMed ID: 31083900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.