BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28970889)

  • 1. Carbon dioxide hydrogenation catalysed by well-defined Mn(i) PNP pincer hydride complexes.
    Bertini F; Glatz M; Gorgas N; Stöger B; Peruzzini M; Veiros LF; Kirchner K; Gonsalvi L
    Chem Sci; 2017 Jul; 8(7):5024-5029. PubMed ID: 28970889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoselective Hydrogenation of Aldehydes under Mild, Base-Free Conditions: Manganese Outperforms Rhenium.
    Glatz M; Stöger B; Himmelbauer D; Veiros LF; Kirchner K
    ACS Catal; 2018 May; 8(5):4009-4016. PubMed ID: 29755828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Dioxide Hydrogenation to Formate Catalyzed by a Bench-Stable, Non-Pincer-Type Mn(I) Alkylcarbonyl Complex.
    Kostera S; Weber S; Peruzzini M; Veiros LF; Kirchner K; Gonsalvi L
    Organometallics; 2021 May; 40(9):1213-1220. PubMed ID: 34054185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Dioxide Hydrogenation to Formate Catalyzed by a Neutral, Coordinatively Saturated Tris-Carbonyl Mn(I)-PNP Pincer-Type Complex.
    Kostera S; Manca G; Gonsalvi L
    Chemistry; 2023 Dec; 29(70):e202302642. PubMed ID: 37720981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization.
    Zell T; Milstein D
    Acc Chem Res; 2015 Jul; 48(7):1979-94. PubMed ID: 26079678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient and Selective Hydrogenation of Aldehydes: A Well-Defined Fe(II) Catalyst Exhibits Noble-Metal Activity.
    Gorgas N; Stöger B; Veiros LF; Kirchner K
    ACS Catal; 2016 Apr; 6(4):2664-2672. PubMed ID: 27660732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust and efficient hydrogenation of carbonyl compounds catalysed by mixed donor Mn(I) pincer complexes.
    Yang W; Chernyshov IY; van Schendel RKA; Weber M; Müller C; Filonenko GA; Pidko EA
    Nat Commun; 2021 Jan; 12(1):12. PubMed ID: 33397888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydricity of an Fe-H Species and Catalytic CO2 Hydrogenation.
    Fong H; Peters JC
    Inorg Chem; 2015 Jun; 54(11):5124-35. PubMed ID: 25549663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenation of Terminal Alkenes Catalyzed by Air-Stable Mn(I) Complexes Bearing an N-Heterocyclic Carbene-Based PCP Pincer Ligand.
    Zobernig DP; Luxner M; Stöger B; Veiros LF; Kirchner K
    Chemistry; 2024 Jan; 30(4):e202302455. PubMed ID: 37814821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmasking the Ligand Effect in Manganese-Catalyzed Hydrogenation: Mechanistic Insight and Catalytic Application.
    Wang Y; Zhu L; Shao Z; Li G; Lan Y; Liu Q
    J Am Chem Soc; 2019 Oct; 141(43):17337-17349. PubMed ID: 31633346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.
    Gorgas N; Kirchner K
    Acc Chem Res; 2018 Jun; 51(6):1558-1569. PubMed ID: 29863334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and reactivity of BINEPINE-based chiral Fe(II) PNP pincer complexes.
    Schröder-Holzhacker C; Gorgas N; Stöger B; Kirchner K
    Monatsh Chem; 2016; 147():1023-1030. PubMed ID: 27340297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explaining the Advantageous Impact of Tertiary versus Secondary Nitrogen Center on the Activity of PNP-Pincer Co(I)-Complexes for Catalytic Hydrogenation of CO
    Bothra N; Das S; Pati SK
    Chemistry; 2021 Nov; 27(66):16407-16414. PubMed ID: 34636450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Hydrogenation of Ketones and Aldehydes Catalyzed by Well-Defined Iron(II) PNP Pincer Complexes: Evidence for an Insertion Mechanism.
    Gorgas N; Stöger B; Veiros LF; Pittenauer E; Allmaier G; Kirchner K
    Organometallics; 2014 Dec; 33(23):6905-6914. PubMed ID: 27642211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations.
    Liu W; Sahoo B; Junge K; Beller M
    Acc Chem Res; 2018 Aug; 51(8):1858-1869. PubMed ID: 30091891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Catalyst Isomers Using an
    Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ
    Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.
    Sawatlon B; Surawatanawong P
    Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.