These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 28971201)

  • 1. Thermal conductivity of a h-BCN monolayer.
    Zhang YY; Pei QX; Liu HY; Wei N
    Phys Chem Chem Phys; 2017 Oct; 19(40):27326-27331. PubMed ID: 28971201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonons and thermal conducting properties of borocarbonitride (BCN) nanosheets.
    Chakraborty H; Mogurampelly S; Yadav VK; Waghmare UV; Klein ML
    Nanoscale; 2018 Dec; 10(47):22148-22154. PubMed ID: 30357208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic insights into the anisotropic mechanical properties and role of ripples on the thermal expansion of h-BCN monolayers.
    Thomas S; Lee SU
    RSC Adv; 2019 Jan; 9(3):1238-1246. PubMed ID: 35518025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Yang Y; Ma J; Yang J; Zhang Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45742-45751. PubMed ID: 36172714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and effective mass modulation in 2D BCN by strain engineering.
    Liu L; Kou L; Wang Y; Lu C; Hu X
    Nanotechnology; 2020 Nov; 31(45):455702. PubMed ID: 32808598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal rectification in novel two-dimensional hybrid graphene/BCN sheets: A molecular dynamics simulation.
    Farzadian O; Yousefi F; Shafiee M; Khoeini F; Spitas C; Kostas KV
    J Mol Graph Model; 2024 Jun; 129():108763. PubMed ID: 38555799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolayer and bilayer polyaniline C
    Hong Y; Zhang J; Zeng XC
    Nanoscale; 2018 Mar; 10(9):4301-4310. PubMed ID: 29442106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The unexpected non-monotonic inter-layer bonding dependence of the thermal conductivity of bilayered boron nitride.
    Gao Y; Zhang X; Jing Y; Hu M
    Nanoscale; 2015 Apr; 7(16):7143-50. PubMed ID: 25811773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-like Boron-Carbon-Nitrogen Monolayers.
    Beniwal S; Hooper J; Miller DP; Costa PS; Chen G; Liu SY; Dowben PA; Sykes EC; Zurek E; Enders A
    ACS Nano; 2017 Mar; 11(3):2486-2493. PubMed ID: 28165713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-tuned magnetism and half-metal to metal transition in defective BCN monolayer.
    Wang J; Kou L; Ni Y; Hu X
    J Phys Condens Matter; 2021 May; 33(23):. PubMed ID: 33636712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Wu X; Han Q
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32564-32578. PubMed ID: 34196535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation.
    Zhang Z; Hu S; Chen J; Li B
    Nanotechnology; 2017 Jun; 28(22):225704. PubMed ID: 28492182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional hexagonal boron-carbon-nitrogen atomic layers.
    Cheng L; Meng J; Pan X; Lu Y; Zhang X; Gao M; Yin Z; Wang D; Wang Y; You J; Zhang J; Xie E
    Nanoscale; 2019 May; 11(21):10454-10462. PubMed ID: 31112200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Thermal Conductivity Enhanced Polymer Composites by Constructing an Oriented Three-Dimensional Staggered Interconnected Network of Boron Nitride Platelets and Carbon Nanotubes.
    Su Z; Wang H; He J; Guo Y; Qu Q; Tian X
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36342-36351. PubMed ID: 30264559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delineating the role of ripples on the thermal expansion of 2D honeycomb materials: graphene, 2D h-BN and monolayer (ML)-MoS
    Anees P; Valsakumar MC; Panigrahi BK
    Phys Chem Chem Phys; 2017 Apr; 19(16):10518-10526. PubMed ID: 28387418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropy-Driven High Thermal Conductivity in Stretchable Poly(vinyl alcohol)/Hexagonal Boron Nitride Nanohybrid Films.
    Kwon OH; Ha T; Kim DG; Kim BG; Kim YS; Shin TJ; Koh WG; Lim HS; Yoo Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34625-34633. PubMed ID: 30216038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains.
    Kuang Y; Lindsay L; Huang B
    Nano Lett; 2015 Sep; 15(9):6121-7. PubMed ID: 26241731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulated thermal conductivity of 2D hexagonal boron arsenide: a strain engineering study.
    Raeisi M; Ahmadi S; Rajabpour A
    Nanoscale; 2019 Nov; 11(45):21799-21810. PubMed ID: 31691704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitutional carbon doping of free-standing and Ru-supported BN sheets: a first-principles study.
    Berseneva N; Komsa HP; Vierimaa V; Björkman T; Fan Z; Harju A; Todorović M; Krasheninnikov AV; Nieminen RM
    J Phys Condens Matter; 2017 Oct; 29(41):415301. PubMed ID: 28718771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.