BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 28971274)

  • 1. A Lactococcus lactis expression vector set with multiple affinity tags to facilitate isolation and direct labeling of heterologous secreted proteins.
    Romero Pastrana F; Neef J; van Dijl JM; Buist G
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8139-8149. PubMed ID: 28971274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile vector suite for the extracytoplasmic production and purification of heterologous His-tagged proteins in Lactococcus lactis.
    Neef J; Milder FJ; Koedijk DG; Klaassens M; Heezius EC; van Strijp JA; Otto A; Becher D; van Dijl JM; Buist G
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9037-48. PubMed ID: 26160391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient production of secreted staphylococcal antigens in a non-lysing and proteolytically reduced Lactococcus lactis strain.
    Neef J; Koedijk DG; Bosma T; van Dijl JM; Buist G
    Appl Microbiol Biotechnol; 2014 Dec; 98(24):10131-41. PubMed ID: 25176446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis.
    Samazan F; Rokbi B; Seguin D; Telles F; Gautier V; Richarme G; Chevret D; Varela PF; Velours C; Poquet I
    Microb Cell Fact; 2015 Jul; 14():104. PubMed ID: 26178240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of two Lactococcus lactis expression vectors combining the Gateway and the NIsin Controlled Expression systems.
    Douillard FP; Mahony J; Campanacci V; Cambillau C; van Sinderen D
    Plasmid; 2011 Sep; 66(3):129-35. PubMed ID: 21807023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis.
    Gutiérrez J; Larsen R; Cintas LM; Kok J; Hernández PE
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):41-51. PubMed ID: 16416297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplified expression, purification and functional reconstitution of the dipeptide and tripeptide transport protein of Lactococcus lactis.
    Hagting A; Knol J; Hasemeier B; Streutker MR; Fang G; Poolman B; Konings WN
    Eur J Biochem; 1997 Jul; 247(2):581-7. PubMed ID: 9266700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane Protein Production in Lactococcus lactis for Structural Studies.
    Martens C
    Methods Mol Biol; 2020; 2127():29-45. PubMed ID: 32112313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression.
    Simões-Barbosa A; Abreu H; Silva Neto A; Gruss A; Langella P
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):61-7. PubMed ID: 14758518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane protein expression in Lactococcus lactis.
    Frelet-Barrand A; Boutigny S; Kunji ER; Rolland N
    Methods Mol Biol; 2010; 601():67-85. PubMed ID: 20099140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A xylose-inducible expression system for Lactococcus lactis.
    Miyoshi A; Jamet E; Commissaire J; Renault P; Langella P; Azevedo V
    FEMS Microbiol Lett; 2004 Oct; 239(2):205-12. PubMed ID: 15476967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression in Lactococcus lactis of a β-1,3-1,4-glucanase gene from Bacillus sp. SJ-10 isolated from fermented fish.
    Tak JY; Jang WJ; Lee JM; Suraiya S; Kong IS
    Protein Expr Purif; 2019 Oct; 162():18-23. PubMed ID: 31112758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis.
    Pek HB; Lim PY; Liu C; Lee DY; Bi X; Wong FT; Ow DS
    Biotechnol Lett; 2017 May; 39(5):759-765. PubMed ID: 28155177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system.
    Douillard FP; O'Connell-Motherway M; Cambillau C; van Sinderen D
    Microb Cell Fact; 2011 Aug; 10():66. PubMed ID: 21827702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of Staphylococcus aureus clumping factor A in Lactococcus lactis subsp. cremoris using a new shuttle vector.
    Que YA; Haefliger JA; Francioli P; Moreillon P
    Infect Immun; 2000 Jun; 68(6):3516-22. PubMed ID: 10816506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous expression and purification of NisA, the precursor peptide of lantibiotic nisin from Lactococcus lactis.
    Karakas-Sen A; Narbad A
    Acta Biol Hung; 2012 Jun; 63(2):301-10. PubMed ID: 22695527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1.
    Bakari S; Lembrouk M; Sourd L; Ousalem F; André F; Orlowski S; Delaforge M; Frelet-Barrand A
    Mol Biotechnol; 2016 Apr; 58(4):299-310. PubMed ID: 26961909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nisin-controlled extracellular production of apidaecin in Lactococcus lactis.
    Zhou XX; Wang YB; Pan YJ; Li WF
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):947-53. PubMed ID: 18286279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vaccination against Staphylococcus aureus experimental endocarditis using recombinant Lactococcus lactis expressing ClfA or FnbpA.
    Veloso TR; Mancini S; Giddey M; Vouillamoz J; Que YA; Moreillon P; Entenza JM
    Vaccine; 2015 Jul; 33(30):3512-7. PubMed ID: 26048778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering integrative vectors based on phage site-specific recombination mechanism for Lactococcus lactis.
    Koko I; Song AA; Masarudin MJ; Abdul Rahim R
    BMC Biotechnol; 2019 Nov; 19(1):82. PubMed ID: 31775775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.