These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28971554)

  • 41. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Building Peptide Bonds in Haifa: The Seventh Chemical Protein Synthesis (CPS) Meeting.
    Lang K
    Chembiochem; 2018 Jan; 19(2):115-120. PubMed ID: 29251813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Serine/threonine ligation for the chemical synthesis of proteins.
    Lee CL; Li X
    Curr Opin Chem Biol; 2014 Oct; 22():108-14. PubMed ID: 25299572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Imidazole-Aided Native Chemical Ligation: Imidazole as a One-Pot Desulfurization-Amenable Non-Thiol-Type Alternative to 4-Mercaptophenylacetic Acid.
    Sakamoto K; Tsuda S; Mochizuki M; Nohara Y; Nishio H; Yoshiya T
    Chemistry; 2016 Dec; 22(50):17940-17944. PubMed ID: 27709754
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isosteric replacement of sulfur with other chalcogens in peptides and proteins.
    Moroder L
    J Pept Sci; 2005 Apr; 11(4):187-214. PubMed ID: 15782428
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemoselective modifications for the traceless ligation of thioamide-containing peptides and proteins.
    Wang YJ; Szantai-Kis DM; Petersson EJ
    Org Biomol Chem; 2016 Jul; 14(26):6262-9. PubMed ID: 27264841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protocol for semisynthesis of serotonylated histone H3 by rapid protein desulfurization in tandem with native chemical ligation.
    Sun Z; Wei T; Cao Y; Li X
    STAR Protoc; 2023 Mar; 4(1):102042. PubMed ID: 36825812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accessing posttranslationally modified proteins through thiol positioning.
    Kumar KS; Brik A
    J Pept Sci; 2010 Oct; 16(10):524-9. PubMed ID: 20862719
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemical ligation of S-scylated cysteine peptides to form native peptides via 5-, 11-, and 14-membered cyclic transition states.
    Katritzky AR; Tala SR; Abo-Dya NE; Ibrahim TS; El-Feky SA; Gyanda K; Pandya KM
    J Org Chem; 2011 Jan; 76(1):85-96. PubMed ID: 21158395
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Traceless purification and desulfurization of tau protein ligation products.
    Reimann O; Smet-Nocca C; Hackenberger CP
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):306-10. PubMed ID: 25404175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parallel Chemical Protein Synthesis on a Surface Enables the Rapid Analysis of the Phosphoregulation of SH3 Domains.
    Zitterbart R; Seitz O
    Angew Chem Int Ed Engl; 2016 Jun; 55(25):7252-6. PubMed ID: 27161995
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Chemical Synthesis of Site-Specifically Modified Proteins Via Diselenide-Selenoester Ligation.
    Griffiths RC; Mitchell NJ
    Methods Mol Biol; 2021; 2355():231-251. PubMed ID: 34386962
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of hemithioindigo-based chromopeptides by using the Tmb auxiliary in native chemical ligation studies.
    Kitzig S; Rück-Braun K
    J Pept Sci; 2017 Jul; 23(7-8):567-573. PubMed ID: 28371154
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemoselective Peptide Cyclization and Bicyclization Directly on Unprotected Peptides.
    Zhang Y; Zhang Q; Wong CTT; Li X
    J Am Chem Soc; 2019 Aug; 141(31):12274-12279. PubMed ID: 31314512
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins.
    Bondalapati S; Jbara M; Brik A
    Nat Chem; 2016 Apr; 8(5):407-18. PubMed ID: 27102674
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fmoc-based peptide thioester synthesis with self-purifying effect: heading to native chemical ligation in parallel formats.
    Thomas F
    J Pept Sci; 2013 Mar; 19(3):141-7. PubMed ID: 23389927
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Native chemical ligation between asparagine and valine: application and limitations for the synthesis of tri-phosphorylated C-terminal tau.
    Reimann O; Glanz M; Hackenberger CP
    Bioorg Med Chem; 2015 Jun; 23(12):2890-4. PubMed ID: 25882528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemical protein synthesis.
    Becker CF; Brik A; Dawson P; Hackenberger CP
    J Pept Sci; 2014 Feb; 20(2):63. PubMed ID: 25975419
    [No Abstract]   [Full Text] [Related]  

  • 59. Palladium-Assisted Removal of a Solubilizing Tag from a Cys Side Chain To Facilitate Peptide and Protein Synthesis.
    Maity SK; Mann G; Jbara M; Laps S; Kamnesky G; Brik A
    Org Lett; 2016 Jun; 18(12):3026-9. PubMed ID: 27268382
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sulfanylmethyldimethylaminopyridine as a Useful Thiol Additive for Ligation Chemistry in Peptide/Protein Synthesis.
    Ohkawachi K; Kobayashi D; Morimoto K; Shigenaga A; Denda M; Yamatsugu K; Kanai M; Otaka A
    Org Lett; 2020 Jul; 22(14):5289-5293. PubMed ID: 32396369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.