These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28971723)

  • 1. Differential Contribution of Plant-Beneficial Functions from Pseudomonas kilonensis F113 to Root System Architecture Alterations in Arabidopsis thaliana and Zea mays.
    Vacheron J; Desbrosses G; Renoud S; Padilla R; Walker V; Muller D; Prigent-Combaret C
    Mol Plant Microbe Interact; 2018 Feb; 31(2):212-223. PubMed ID: 28971723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0.
    Iavicoli A; Boutet E; Buchala A; Métraux JP
    Mol Plant Microbe Interact; 2003 Oct; 16(10):851-8. PubMed ID: 14558686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion.
    Combes-Meynet E; Pothier JF; Moënne-Loccoz Y; Prigent-Combaret C
    Mol Plant Microbe Interact; 2011 Feb; 24(2):271-84. PubMed ID: 21043573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria.
    Valente J; Gerin F; Le Gouis J; Moënne-Loccoz Y; Prigent-Combaret C
    Plant Cell Environ; 2020 Jan; 43(1):246-260. PubMed ID: 31509886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms.
    Bainton NJ; Lynch JM; Naseby D; Way JA
    Microb Ecol; 2004 Oct; 48(3):349-57. PubMed ID: 15692855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators.
    Couillerot O; Combes-Meynet E; Pothier JF; Bellvert F; Challita E; Poirier MA; Rohr R; Comte G; Moënne-Loccoz Y; Prigent-Combaret C
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1694-1705. PubMed ID: 21273247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium-tolerant endophytic Pseudomonas rhodesiae strains isolated from Typha latifolia modify the root architecture of Arabidopsis thaliana Col-0 in presence and absence of Cd.
    Rolón-Cárdenas GA; Arvizu-Gómez JL; Pacheco-Aguilar JR; Vázquez-Martínez J; Hernández-Morales A
    Braz J Microbiol; 2021 Mar; 52(1):349-361. PubMed ID: 33236245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic diversity of phlD gene from 2,4-diacetylphloroglucinol-producing Pseudomonas spp. strains from the maize rhizosphere.
    Picard C; Bosco M
    FEMS Microbiol Lett; 2003 Feb; 219(2):167-72. PubMed ID: 12620616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas.
    Persello-Cartieaux F; David P; Sarrobert C; Thibaud MC; Achouak W; Robaglia C; Nussaume L
    Planta; 2001 Jan; 212(2):190-8. PubMed ID: 11216839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates.
    Zhang N; Yang D; Wang D; Miao Y; Shao J; Zhou X; Xu Z; Li Q; Feng H; Li S; Shen Q; Zhang R
    BMC Genomics; 2015 Sep; 16(1):685. PubMed ID: 26346121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle.
    Léon-Kloosterziel KM; Verhagen BW; Keurentjes JJ; VanPelt JA; Rep M; VanLoon LC; Pieterse CM
    Plant Mol Biol; 2005 Mar; 57(5):731-48. PubMed ID: 15988566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2,4-diacetylphloroglucinol alters plant root development.
    Brazelton JN; Pfeufer EE; Sweat TA; Gardener BB; Coenen C
    Mol Plant Microbe Interact; 2008 Oct; 21(10):1349-58. PubMed ID: 18785830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid degradation of Pseudomonas fluorescens 1-aminocyclopropane-1-carboxylic acid deaminase proteins expressed in transgenic Arabidopsis.
    Kim K; Park SH; Chae JC; Soh BY; Lee KJ
    FEMS Microbiol Lett; 2014 Jun; 355(2):193-200. PubMed ID: 24801274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Pseudomonas fluorescens F113 on Ecological Functions in the Pea Rhizosphere Are Dependent on pH.
    Naseby DC; Lynch JM
    Microb Ecol; 1999 May; 37(4):248-256. PubMed ID: 10341054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact on arbuscular mycorrhiza formation of pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens.
    Barea JM; Andrade G; Bianciotto V; Dowling D; Lohrke S; Bonfante P; O'Gara F; Azcon-Aguilar C
    Appl Environ Microbiol; 1998 Jun; 64(6):2304-7. PubMed ID: 9603857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonism between two root-associated beneficial Pseudomonas strains does not affect plant growth promotion and induced resistance against a leaf-chewing herbivore.
    Pangesti N; Vandenbrande S; Pineda A; Dicke M; Raaijmakers JM; Van Loon JJA
    FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 28334335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nematicide Serratia plymuthica M24T3 colonizes Arabidopsis thaliana, stimulates plant growth, and presents plant beneficial potential.
    Proença DN; Schwab S; Vidal MS; Baldani JI; Xavier GR; Morais PV
    Braz J Microbiol; 2019 Jul; 50(3):777-789. PubMed ID: 31177380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana.
    López-Bucio J; Campos-Cuevas JC; Hernández-Calderón E; Velásquez-Becerra C; Farías-Rodríguez R; Macías-Rodríguez LI; Valencia-Cantero E
    Mol Plant Microbe Interact; 2007 Feb; 20(2):207-17. PubMed ID: 17313171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of 2,4-diacetylphloroglucinol-producing biocontrol strain Pseudomonas fluorescens F113 on intraspecific diversity of resident culturable fluorescent pseudomonads associated with the roots of field-grown sugar beet seedlings.
    Moënne-Loccoz Y; Tichy HV; O'Donnell A; Simon R; O'Gara F
    Appl Environ Microbiol; 2001 Aug; 67(8):3418-25. PubMed ID: 11472913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore.
    Pangesti N; Reichelt M; van de Mortel JE; Kapsomenou E; Gershenzon J; van Loon JJ; Dicke M; Pineda A
    J Chem Ecol; 2016 Dec; 42(12):1212-1225. PubMed ID: 27848154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.