BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28972142)

  • 1. The C2
    Garg H; Loughlin PC; Willows RD; Chen M
    J Biol Chem; 2017 Nov; 292(47):19279-19289. PubMed ID: 28972142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions.
    Chen M; Hernandez-Prieto MA; Loughlin PC; Li Y; Willows RD
    BMC Genomics; 2019 Mar; 20(1):207. PubMed ID: 30866821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light.
    Schmitt FJ; Campbell ZY; Bui MV; Hüls A; Tomo T; Chen M; Maksimov EG; Allakhverdiev SI; Friedrich T
    Photosynth Res; 2019 Mar; 139(1-3):185-201. PubMed ID: 30039357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral signatures of five hydroxymethyl chlorophyll a derivatives chemically derived from chlorophyll b or chlorophyll f.
    Sawicki A; Willows RD; Chen M
    Photosynth Res; 2019 Apr; 140(1):115-127. PubMed ID: 30604202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors.
    Schliep M; Crossett B; Willows RD; Chen M
    J Biol Chem; 2010 Sep; 285(37):28450-6. PubMed ID: 20610399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the adaptation and function of chlorophyll f in photosystem I.
    Kato K; Shinoda T; Nagao R; Akimoto S; Suzuki T; Dohmae N; Chen M; Allakhverdiev SI; Shen JR; Akita F; Miyazaki N; Tomo T
    Nat Commun; 2020 Jan; 11(1):238. PubMed ID: 31932639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform visible and infrared difference spectroscopy for the study of P700 in photosystem I from Fischerella thermalis PCC 7521 cells grown under white light and far-red light: Evidence that the A
    Hastings G; Makita H; Agarwala N; Rohani L; Shen G; Bryant DA
    Biochim Biophys Acta Bioenerg; 2019 Jun; 1860(6):452-460. PubMed ID: 30986391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies.
    Akimoto S; Shinoda T; Chen M; Allakhverdiev SI; Tomo T
    Photosynth Res; 2015 Aug; 125(1-2):115-22. PubMed ID: 25648637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorophylls d and f and Their Role in Primary Photosynthetic Processes of Cyanobacteria.
    Allakhverdiev SI; Kreslavski VD; Zharmukhamedov SK; Voloshin RA; Korol'kova DV; Tomo T; Shen JR
    Biochemistry (Mosc); 2016 Mar; 81(3):201-12. PubMed ID: 27262189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substantial near-infrared radiation-driven photosynthesis of chlorophyll
    Kühl M; Trampe E; Mosshammer M; Johnson M; Larkum AW; Frigaard NU; Koren K
    Elife; 2020 Jan; 9():. PubMed ID: 31959282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of energy limitations on function and resilience in long-wavelength Photosystem II.
    Viola S; Roseby W; Santabarbara S; Nürnberg D; Assunção R; Dau H; Sellés J; Boussac A; Fantuzzi A; Rutherford AW
    Elife; 2022 Jul; 11():. PubMed ID: 35852834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium.
    Behrendt L; Brejnrod A; Schliep M; Sørensen SJ; Larkum AW; Kühl M
    ISME J; 2015 Sep; 9(9):2108-11. PubMed ID: 25668158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cyanobacterium that contains chlorophyll f--a red-absorbing photopigment.
    Chen M; Li Y; Birch D; Willows RD
    FEBS Lett; 2012 Sep; 586(19):3249-54. PubMed ID: 22796191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy transfer processes in chlorophyll f-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells.
    Tomo T; Shinoda T; Chen M; Allakhverdiev SI; Akimoto S
    Biochim Biophys Acta; 2014 Sep; 1837(9):1484-9. PubMed ID: 24792349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris.
    Schneegurt MA; Beale SI
    Biochemistry; 1992 Dec; 31(47):11677-83. PubMed ID: 1445904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demetalation kinetics of natural chlorophylls purified from oxygenic photosynthetic organisms: effect of the formyl groups conjugated directly to the chlorin pi-macrocycle.
    Hirai Y; Tamiaki H; Kashimura S; Saga Y
    Photochem Photobiol Sci; 2009 Dec; 8(12):1701-7. PubMed ID: 20024167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris - a filamentous cyanobacterium containing chlorophyll f.
    Li Y; Lin Y; Loughlin PC; Chen M
    Front Plant Sci; 2014; 5():67. PubMed ID: 24616731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The specificity of the bilin lyase CpcS for chromophore attachment to allophycocyanin in the chlorophyll f-containing cyanobacterium Halomicronima hongdechloris.
    Li Y; Chen M
    Photosynth Res; 2022 Mar; 151(3):213-223. PubMed ID: 34564824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread occurrence and unexpected diversity of red-shifted chlorophyll producing cyanobacteria in humid subtropical forest ecosystems.
    Zhang ZC; Li ZK; Yin YC; Li Y; Jia Y; Chen M; Qiu BS
    Environ Microbiol; 2019 Apr; 21(4):1497-1510. PubMed ID: 30838735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light.
    Gisriel CJ; Shen G; Flesher DA; Kurashov V; Golbeck JH; Brudvig GW; Amin M; Bryant DA
    J Biol Chem; 2023 Jan; 299(1):102815. PubMed ID: 36549647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.