BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28972150)

  • 1. Building the Cu
    Jett KA; Leary SC
    J Biol Chem; 2018 Mar; 293(13):4644-4652. PubMed ID: 28972150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connecting CuA with metal centers of heme a, heme a
    Ramasarma T; Vaigundan D
    Biochem Biophys Res Commun; 2019 Mar; 510(2):261-265. PubMed ID: 30686530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved generation of membrane potential by ba
    Siletsky SA; Belevich I; Belevich NP; Soulimane T; Wikström M
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):915-926. PubMed ID: 28807731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres.
    Mason MG; Nicholls P; Cooper CE
    Biochem J; 2009 Aug; 422(2):237-46. PubMed ID: 19534725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination of metal center biogenesis in human cytochrome c oxidase.
    Nývltová E; Dietz JV; Seravalli J; Khalimonchuk O; Barrientos A
    Nat Commun; 2022 Jun; 13(1):3615. PubMed ID: 35750769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemistry of Copper Site Assembly in Heme-Copper Oxidases: A Theme with Variations.
    Llases ME; Morgada MN; Vila AJ
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31387303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox Bohr effects and the role of heme a in the proton pump of bovine heart cytochrome c oxidase.
    Capitanio G; Martino PL; Capitanio N; Papa S
    Biochim Biophys Acta; 2011 Oct; 1807(10):1287-94. PubMed ID: 21320464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the structural subunits required for formation of the metal centers in subunit I of cytochrome c oxidase of Rhodobacter sphaeroides.
    Bratton MR; Hiser L; Antholine WE; Hoganson C; Hosler JP
    Biochemistry; 2000 Oct; 39(42):12989-95. PubMed ID: 11041864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative coupling and role of heme a in the proton pump of heme-copper oxidases.
    Papa S; Capitanio N; Villani G; Capitanio G; Bizzoca A; Palese LL; Carlino V; De Nitto E
    Biochimie; 1998 Oct; 80(10):821-36. PubMed ID: 9893941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A.
    Tsukihara T; Aoyama H; Yamashita E; Tomizaki T; Yamaguchi H; Shinzawa-Itoh K; Nakashima R; Yaono R; Yoshikawa S
    Science; 1995 Aug; 269(5227):1069-74. PubMed ID: 7652554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of a novel transient ferryl complex with reduced CuB in cytochrome c oxidase.
    Zaslavsky D; Smirnova IA; Adelroth P; Brzezinski P; Gennis RB
    Biochemistry; 1999 Feb; 38(8):2307-11. PubMed ID: 10029523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase.
    Morgada MN; Abriata LA; Cefaro C; Gajda K; Banci L; Vila AJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11771-6. PubMed ID: 26351686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome
    Ishigami I; Lewis-Ballester A; Echelmeier A; Brehm G; Zatsepin NA; Grant TD; Coe JD; Lisova S; Nelson G; Zhang S; Dobson ZF; Boutet S; Sierra RG; Batyuk A; Fromme P; Fromme R; Spence JCH; Ros A; Yeh SR; Rousseau DL
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3572-3577. PubMed ID: 30808749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cooperative H(+)/e(-) linkage (redox bohr effect) at heme a/Cu(A) and heme a(3)/Cu(B) in the proton pump of cytochrome c oxidase.
    Papa S
    Biochemistry (Mosc); 2005 Feb; 70(2):178-86. PubMed ID: 15807657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton and electron transfer during the reduction of molecular oxygen by fully reduced cytochrome c oxidase: a flow-flash investigation using optical multichannel detection.
    Paula S; Sucheta A; Szundi I; Einarsdóttir O
    Biochemistry; 1999 Mar; 38(10):3025-33. PubMed ID: 10074355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric Cooperativity in Proton Energy Conversion in A1-Type Cytochrome c Oxidase.
    Capitanio G; Palese LL; Papa F; Papa S
    J Mol Biol; 2020 Jan; 432(2):534-551. PubMed ID: 31626808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical pathway for the biosynthesis of the Cu
    Canonica F; Hennecke H; Glockshuber R
    FEBS Lett; 2019 Nov; 593(21):2977-2989. PubMed ID: 31449676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein chaperones mediating copper insertion into the CuA site of the aa3-type cytochrome c oxidase of Paracoccus denitrificans.
    Dash BP; Alles M; Bundschuh FA; Richter OH; Ludwig B
    Biochim Biophys Acta; 2015 Feb; 1847(2):202-211. PubMed ID: 25445316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1.
    Williams SL; Valnot I; Rustin P; Taanman JW
    J Biol Chem; 2004 Feb; 279(9):7462-9. PubMed ID: 14607829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended X-ray absorption fine structure of copper in CuA-depleted, p-(hydroxymercuri)benzoate-modified, and native cytochrome c oxidase.
    Li PM; Gelles J; Chan SI; Sullivan RJ; Scott RA
    Biochemistry; 1987 Apr; 26(8):2091-5. PubMed ID: 3040080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.