These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 2897230)

  • 1. gamma-L-glutamyl-L-aspartate induces specific deficits in long-term memory and inhibits [3H]glutamate binding on hippocampal membranes.
    Ungerer A; Schmitz-Bourgeois M; Mélan C; Boulanger Y; Reinbolt J; Amiri I; de Barry J
    Brain Res; 1988 Apr; 446(2):205-11. PubMed ID: 2897230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NMDA receptor antagonists, CPP and gamma-L-glutamyl-L-aspartate, selectively block post-training improvement of performance in a Y-maze avoidance learning task.
    Ungerer A; Mathis C; Mélan C; De Barry J
    Brain Res; 1991 May; 549(1):59-65. PubMed ID: 1832579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Role of neuroexcitatory amino acids in memory processes. Study with gamma-L-glutamyl-L-aspartic acid].
    Ungerer A; Mathis C; Melan C; De Barry J
    Encephale; 1990; 16(6):423-9. PubMed ID: 1983215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain-dependent effects of gamma-L-glutamyl-L-aspartate, a NMDA antagonist, on retention of a Y-maze avoidance learning task in mice.
    Ungerer A; Mélan C; De Barry J
    Behav Brain Res; 1993 May; 55(1):69-75. PubMed ID: 8329128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memory deficits induced by gamma-L-glutamyl-L-aspartate and D-2-amino-6-phosphonovalerate in a Y-maze avoidance task: relationship to NMDA receptor antagonism.
    Mathis C; de Barry J; Ungerer A
    Psychopharmacology (Berl); 1991; 105(4):546-52. PubMed ID: 1685252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gamma-L-glutamyl-L-aspartate, interacting with NMDA receptors, affects appetitive visual discrimination tasks in mice.
    Melan C; De Barry J; Ungerer A
    Behav Neural Biol; 1991 May; 55(3):356-65. PubMed ID: 1829354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are glutamate receptors specifically implicated in some forms of memory processes?
    Ungerer A; Mathis C; Mélan C
    Exp Brain Res; 1998 Nov; 123(1-2):45-51. PubMed ID: 9835391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMDA antagonist properties of gamma-L-glutamyl-L-aspartate demonstrated on chemically induced seizures in mice.
    Mathis C; De Barry J; Ungerer A
    Eur J Pharmacol; 1990 Aug; 185(1):53-9. PubMed ID: 2146137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of glutamate agonist-induced influx of calcium into neurons by gamma-L-glutamyl and beta-L-aspartyl dipeptides.
    Varga V; Janáky R; Oja SS
    Neurosci Lett; 1992 Apr; 138(2):270-4. PubMed ID: 1351662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticosterone decreases 3H-glutamate binding in rat hippocampal formation.
    Halpain S; McEwen BS
    Neuroendocrinology; 1988 Sep; 48(3):235-41. PubMed ID: 2903460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CPP, a selective N-methyl-D-aspartate (NMDA)-type receptor antagonist: characterization in vitro and in vivo.
    Lehmann J; Schneider J; McPherson S; Murphy DE; Bernard P; Tsai C; Bennett DA; Pastor G; Steel DJ; Boehm C
    J Pharmacol Exp Ther; 1987 Mar; 240(3):737-46. PubMed ID: 2882014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP): a new and highly potent antagonist of N-methyl-D-aspartate receptors in the hippocampus.
    Harris EW; Ganong AH; Monaghan DT; Watkins JC; Cotman CW
    Brain Res; 1986 Sep; 382(1):174-7. PubMed ID: 2876750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of spontaneous posttraining performance improvement in mice by NMDA antagonists.
    Mélan C; Eichenlaub D; Ungerer A; Messier C; Destrade C
    Pharmacol Biochem Behav; 1997 Apr; 56(4):589-94. PubMed ID: 9130282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and structure of a pseudopeptide gamma-L-glutamyl-L-aspartic acid from Datura stramonium that impairs learning retention in mice.
    Schmitz-Bourgeois M; Amiri I; Reinbolt J; Boulanger Y; Ungerer A
    Biochimie; 1988 Sep; 70(9):1179-84. PubMed ID: 3147710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of memory processing by glutamic acid receptor agonists and antagonists.
    Flood JF; Baker ML; Davis JL
    Brain Res; 1990 Jun; 521(1-2):197-202. PubMed ID: 2169959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-methyl-D-aspartate-sensitive [3H]glutamate binding sites in brain synaptic membranes treated with Triton X-100.
    Yoneda Y; Ogita K; Ohgaki T; Uchida S; Meguri H
    Biochim Biophys Acta; 1989 Jun; 1012(1):74-80. PubMed ID: 2567184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective association of N-methyl aspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities.
    Fagg GE; Matus A
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6876-80. PubMed ID: 6149551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of L-glutamate and L-aspartate synaptic receptors in chick retinal neurons.
    López-Colomé AM; Somohano F
    Brain Res; 1984 Apr; 298(1):159-62. PubMed ID: 6144357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of zinc on markers of glutamate and aspartate neurotransmission in rat hippocampus.
    Slevin JT; Kasarskis EJ
    Brain Res; 1985 May; 334(2):281-6. PubMed ID: 2859913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonists and cations regulate the glutamic acid receptors on intact neuroblastoma hybrid cells.
    Malouf AT; Coyle JT; Schnaar RL
    J Biol Chem; 1984 Oct; 259(20):12763-8. PubMed ID: 6149216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.