These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28972562)

  • 1. De Novo Assembly and Analysis of Tartary Buckwheat (Fagopyrum tataricum Garetn.) Transcriptome Discloses Key Regulators Involved in Salt-Stress Response.
    Wu Q; Bai X; Zhao W; Xiang D; Wan Y; Yan J; Zou L; Zhao G
    Genes (Basel); 2017 Oct; 8(10):. PubMed ID: 28972562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic identification of salt-related genes and de novo assembly in common buckwheat (F. esculentum).
    Lu QH; Wang YQ; Song JN; Yang HB
    Plant Physiol Biochem; 2018 Jun; 127():299-309. PubMed ID: 29677680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense.
    Kashyap SP; Prasanna HC; Kumari N; Mishra P; Singh B
    Sci Rep; 2020 Sep; 10(1):15835. PubMed ID: 32985535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Transcriptome and Metabolic Profiling Analysis of Buckwheat (
    Ma W; Kim JK; Jia C; Yin F; Kim HJ; Akram W; Hu X; Li X
    Metabolites; 2019 Oct; 9(10):. PubMed ID: 31614965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum).
    Zhu H; Wang H; Zhu Y; Zou J; Zhao FJ; Huang CF
    BMC Plant Biol; 2015 Jan; 15():16. PubMed ID: 25603892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome profiling of Fagopyrum tataricum leaves in response to lead stress.
    Wang L; Zheng B; Yuan Y; Xu Q; Chen P
    BMC Plant Biol; 2020 Feb; 20(1):54. PubMed ID: 32013882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tartary Buckwheat (
    Wang J; Ma Z; Tang B; Yu H; Tang Z; Bu T; Wu Q; Chen H
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33801146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep sequencing of the transcriptome reveals distinct flavonoid metabolism features of black tartary buckwheat (Fagopyrum tataricum Garetn.).
    Yao H; Li C; Zhao H; Zhao J; Chen H; Bu T; Anhu W; Wu Q
    Prog Biophys Mol Biol; 2017 Mar; 124():49-60. PubMed ID: 27836511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes.
    Liu J; Zhou Y; Luo C; Xiang Y; An L
    Genes (Basel); 2016 Mar; 7(4):. PubMed ID: 27023614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes.
    Rong L; Li Q; Li S; Tang L; Wen J
    Mol Genet Genomics; 2016 Apr; 291(2):575-86. PubMed ID: 26475609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance.
    Zhang L; Li X; Ma B; Gao Q; Du H; Han Y; Li Y; Cao Y; Qi M; Zhu Y; Lu H; Ma M; Liu L; Zhou J; Nan C; Qin Y; Wang J; Cui L; Liu H; Liang C; Qiao Z
    Mol Plant; 2017 Sep; 10(9):1224-1237. PubMed ID: 28866080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptome and genome analysis unravels the response of Tatary buckwheat root to nitrogen deficiency.
    Liu C; Qiu Q; Zou B; Wu Q; Ye X; Wan Y; Huang J; Wu X; Sun Y; Yan H; Fan Y; Jiang L; Zheng X; Zhao G; Zou L; Xiang D
    Plant Physiol Biochem; 2023 Mar; 196():647-660. PubMed ID: 36796235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pretreatment with H
    Yao X; Zhou M; Ruan J; Peng Y; Yang H; Tang Y; Gao A; Cheng J
    Plants (Basel); 2021 Aug; 10(9):. PubMed ID: 34579317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii.
    Qiu Z; Liu F; Lu H; Yuan H; Zhang Q; Huang Y
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27455245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress.
    Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X
    Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome Analysis of Ceriops tagal in Saline Environments Using RNA-Sequencing.
    Xiao X; Hong Y; Xia W; Feng S; Zhou X; Fu X; Zang J; Xiao Y; Niu X; Li C; Chen Y
    PLoS One; 2016; 11(12):e0167551. PubMed ID: 27936168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance.
    Diray-Arce J; Clement M; Gul B; Khan MA; Nielsen BL
    BMC Genomics; 2015 May; 16(1):353. PubMed ID: 25943316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress.
    Zhang X; Liao M; Chang D; Zhang F
    BMC Res Notes; 2014 Dec; 7():927. PubMed ID: 25515859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses.
    Yang H; Sun M; Lin S; Guo Y; Yang Y; Zhang T; Zhang J
    PLoS One; 2017; 12(11):e0187124. PubMed ID: 29131853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic transcriptome analysis suggests the key genes regulating seed development and filling in Tartary buckwheat (
    Jiang L; Liu C; Fan Y; Wu Q; Ye X; Li Q; Wan Y; Sun Y; Zou L; Xiang D; Lv Z
    Front Genet; 2022; 13():990412. PubMed ID: 36072657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.