These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28972730)

  • 1. Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation.
    Wang XQ; Tan CF; Chan KH; Xu K; Hong M; Kim SW; Ho GW
    ACS Nano; 2017 Oct; 11(10):10568-10574. PubMed ID: 28972730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.
    Park T; Na J; Kim B; Kim Y; Shin H; Kim E
    ACS Nano; 2015 Dec; 9(12):11830-9. PubMed ID: 26308669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermally Enabled Pyro-Catalysis of a BaTiO
    Min M; Liu Y; Song C; Zhao D; Wang X; Qiao Y; Feng R; Hao W; Tao P; Shang W; Wu J; Deng T
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21246-21253. PubMed ID: 29870218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery.
    Zabek D; Seunarine K; Spacie C; Bowen C
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):9161-9167. PubMed ID: 28222264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevating Low-Grade Heat Harvesting with Daytime Radiative Cooling and Solar Heating in Thermally Regenerative Electrochemical Cycles.
    Woo HK; Zhou K; Choi YY; Cai L
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38644801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An infrared-driven flexible pyroelectric generator for non-contact energy harvester.
    Zhao T; Jiang W; Liu H; Niu D; Li X; Liu W; Li X; Chen B; Shi Y; Yin L; Lu B
    Nanoscale; 2016 Apr; 8(15):8111-7. PubMed ID: 27025660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films.
    Pandya S; Wilbur J; Kim J; Gao R; Dasgupta A; Dames C; Martin LW
    Nat Mater; 2018 May; 17(5):432-438. PubMed ID: 29662157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Polymer-on-Polymer Architecture for Piezo/Pyroelectric Energy Harvesting.
    Talemi P; Delaigue M; Murphy P; Fabretto M
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8465-71. PubMed ID: 25806971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of a pyroelectric body energy harvesting scheme employing pulsed electric fields.
    Kumara Sodige BA; Furuno H; Trung Ngo NC; Sugiyama H; Baba M; Niihara K; Nakayama T
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37466409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced P3HT/ZnO Nanowire Array Solar Cells by Pyro-phototronic Effect.
    Zhang K; Wang ZL; Yang Y
    ACS Nano; 2016 Nov; 10(11):10331-10338. PubMed ID: 27794597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D C@TiO
    Li Y; Chang H; Wang Z; Shen Q; Liu X; Xue J; Jia H
    J Colloid Interface Sci; 2022 Mar; 609():535-546. PubMed ID: 34802758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling.
    Zhu L; Tian L; Jiang S; Han L; Liang Y; Li Q; Chen S
    Chem Soc Rev; 2023 Oct; 52(21):7389-7460. PubMed ID: 37743823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyroelectric Energy Conversion and Its Applications-Flexible Energy Harvesters and Sensors.
    Thakre A; Kumar A; Song HC; Jeong DY; Ryu J
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Photo-Thermo-Electric Conversion Using Polyoxovanadate in Ionic Liquid for Low-Grade Heat Utilization.
    Wang Y; Liu C; Wang Y; Zhu C; Chen X; Liu B
    ChemSusChem; 2021 Dec; 14(24):5434-5441. PubMed ID: 34570434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Pyroelectric Catalysis of BaTiO
    Wu J; Qin N; Yuan B; Lin E; Bao D
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37963-37973. PubMed ID: 30360057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A NIR light-triggered pyroelectric-dominated generator based on a liquid crystal elastomer composite actuator for photoelectric conversion and self-powered sensing.
    Wei W; Gao J; Yang J; Wei J; Guo J
    RSC Adv; 2018 Dec; 8(71):40856-40865. PubMed ID: 35557937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress on Material Design and Device Fabrication via Coupling Photothermal Effect with Thermoelectric Effect.
    Liu S; Huo B; Guo CY
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Strip Cell in Pyroelectric Devices.
    Siao AS; Chao CK; Hsiao CC
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Efficiency Photo-Thermo-Electric System with Waste Heat Utilization and Energy Storage.
    Wu Y; Li Y; Long Y; Xu Y; Yang J; Zhu H; Liu T; Shi G
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40437-40446. PubMed ID: 36005284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.