These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28972735)
21. Protein Corona Formation on Colloidal Polymeric Nanoparticles and Polymeric Nanogels: Impact on Cellular Uptake, Toxicity, Immunogenicity, and Drug Release Properties. Obst K; Yealland G; Balzus B; Miceli E; Dimde M; Weise C; Eravci M; Bodmeier R; Haag R; Calderón M; Charbaji N; Hedtrich S Biomacromolecules; 2017 Jun; 18(6):1762-1771. PubMed ID: 28511014 [TBL] [Abstract][Full Text] [Related]
22. Investigation of size, surface charge, PEGylation degree and concentration on the cellular uptake of polymer nanoparticles. Ferrari R; Lupi M; Colombo C; Morbidelli M; D'Incalci M; Moscatelli D Colloids Surf B Biointerfaces; 2014 Nov; 123():639-47. PubMed ID: 25456985 [TBL] [Abstract][Full Text] [Related]
23. Effects of mannose density on in vitro and in vivo cellular uptake and RNAi efficiency of polymeric nanoparticles. Chu S; Tang C; Yin C Biomaterials; 2015 Jun; 52():229-39. PubMed ID: 25818429 [TBL] [Abstract][Full Text] [Related]
24. Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis? Field LD; Delehanty JB; Chen Y; Medintz IL Acc Chem Res; 2015 May; 48(5):1380-90. PubMed ID: 25853734 [TBL] [Abstract][Full Text] [Related]
25. Nano-anisotropic surface coating based on drug immobilized pendant polymer to suppress macrophage adhesion response. Kaladhar K; Renz H; Sharma CP Colloids Surf B Biointerfaces; 2015 Apr; 128():8-16. PubMed ID: 25723344 [TBL] [Abstract][Full Text] [Related]
26. Cellular internalization of polypeptide-based nanoparticles: effects of size, shape and surface morphology. Xue J; Guan Z; Zhu X; Lin J; Cai C; Jin X; Li Y; Ye Z; Zhang W; Jiang X Biomater Sci; 2018 Nov; 6(12):3251-3261. PubMed ID: 30335094 [TBL] [Abstract][Full Text] [Related]
27. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
28. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Kashyap S; Singh N; Surnar B; Jayakannan M Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038 [TBL] [Abstract][Full Text] [Related]
29. The functional dissection of the plasma corona of SiO₂-NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages. Fedeli C; Segat D; Tavano R; Bubacco L; De Franceschi G; de Laureto PP; Lubian E; Selvestrel F; Mancin F; Papini E Nanoscale; 2015 Nov; 7(42):17710-28. PubMed ID: 26451907 [TBL] [Abstract][Full Text] [Related]
30. Glycocalyx-Mimicking Nanoparticles for Stimulation and Polarization of Macrophages via Specific Interactions. Su L; Zhang W; Wu X; Zhang Y; Chen X; Liu G; Chen G; Jiang M Small; 2015 Sep; 11(33):4191-200. PubMed ID: 25994111 [TBL] [Abstract][Full Text] [Related]
32. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization. Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585 [TBL] [Abstract][Full Text] [Related]
33. Responses of RAW264.7 macrophages to water-dispersible gold and silver nanoparticles stabilized by metal-carbon σ-bonds. Hashimoto M; Toshima H; Yonezawa T; Kawai K; Narushima T; Kaga M; Endo K J Biomed Mater Res A; 2014 Jun; 102(6):1838-49. PubMed ID: 23784947 [TBL] [Abstract][Full Text] [Related]
34. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Hu J; Zhang G; Liu S Chem Soc Rev; 2012 Sep; 41(18):5933-49. PubMed ID: 22695880 [TBL] [Abstract][Full Text] [Related]
35. Design and synthesis of temperature-responsive polymer/silica hybrid nanoparticles and application to thermally controlled cellular uptake. Hiruta Y; Nemoto R; Kanazawa H Colloids Surf B Biointerfaces; 2017 May; 153():2-9. PubMed ID: 28192714 [TBL] [Abstract][Full Text] [Related]
36. Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics. Zhao Y; Houston ZH; Simpson JD; Chen L; Fletcher NL; Fuchs AV; Blakey I; Thurecht KJ Mol Pharm; 2017 Oct; 14(10):3539-3549. PubMed ID: 28880092 [TBL] [Abstract][Full Text] [Related]
37. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Zahr AS; Davis CA; Pishko MV Langmuir; 2006 Sep; 22(19):8178-85. PubMed ID: 16952259 [TBL] [Abstract][Full Text] [Related]
38. Hydrogel nanoparticle degradation influences the activation and survival of primary macrophages. Jarai BM; Stillman Z; Fromen CA J Mater Chem B; 2021 Sep; 9(35):7246-7257. PubMed ID: 34226910 [TBL] [Abstract][Full Text] [Related]
39. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo. Rinkenauer AC; Press AT; Raasch M; Pietsch C; Schweizer S; Schwörer S; Rudolph KL; Mosig A; Bauer M; Traeger A; Schubert US J Control Release; 2015 Oct; 216():158-68. PubMed ID: 26277064 [TBL] [Abstract][Full Text] [Related]
40. RGD functionalized polymeric nanoparticles targeting periodontitis epithelial cells for the enhanced treatment of periodontitis in dogs. Yao W; Xu P; Zhao J; Ling L; Li X; Zhang B; Cheng N; Pang Z J Colloid Interface Sci; 2015 Nov; 458():14-21. PubMed ID: 26197107 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]