BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 28972779)

  • 1. Exfoliation Mechanism of Graphite Cathode in Ionic Liquids.
    Lei H; Tu J; Yu Z; Jiao S
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36702-36707. PubMed ID: 28972779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes.
    Zhu G; Angell M; Pan CJ; Lin MC; Chen H; Huang CJ; Lin J; Achazi AJ; Kaghazchi P; Hwang BJ; Dai H
    RSC Adv; 2019 Apr; 9(20):11322-11330. PubMed ID: 35520252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Graphite-Graphite Dual Ion Battery Using an AlCl
    Li Z; Liu J; Niu B; Li J; Kang F
    Small; 2018 Jul; 14(28):e1800745. PubMed ID: 29882341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.
    Angell M; Pan CJ; Rong Y; Yuan C; Lin MC; Hwang BJ; Dai H
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):834-839. PubMed ID: 28096353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.
    Wang S; Jiao S; Wang J; Chen HS; Tian D; Lei H; Fang DN
    ACS Nano; 2017 Jan; 11(1):469-477. PubMed ID: 27977919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries.
    Choi S; Go H; Lee G; Tak Y
    Phys Chem Chem Phys; 2017 Mar; 19(13):8653-8656. PubMed ID: 28144668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kish Graphite Flakes as a Cathode Material for an Aluminum Chloride-Graphite Battery.
    Wang S; Kravchyk KV; Krumeich F; Kovalenko MV
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28478-28485. PubMed ID: 28766336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The staging mechanism of AlCl
    Bhauriyal P; Mahata A; Pathak B
    Phys Chem Chem Phys; 2017 Mar; 19(11):7980-7989. PubMed ID: 28263339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of electrolytes for aluminum ion batteries: A molecular dynamics study.
    Kosar M; Taimoory SM; Diesenhaus O; Trant JF
    J Chem Phys; 2023 Oct; 159(14):. PubMed ID: 37823460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.
    Wu L; Li W; Li P; Liao S; Qiu S; Chen M; Guo Y; Li Q; Zhu C; Liu L
    Small; 2014 Apr; 10(7):1421-9. PubMed ID: 24323826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemically Exfoliated Graphene Electrode for High-Performance Rechargeable Chloroaluminate and Dual-Ion Batteries.
    Ejigu A; Le Fevre LW; Fujisawa K; Terrones M; Forsyth AJ; Dryfe RAW
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23261-23270. PubMed ID: 31252480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion and Stabilization of Exfoliated Graphene in Ionic Liquids.
    Bordes E; Morcos B; Bourgogne D; Andanson JM; Bussière PO; Santini CC; Benayad A; Costa Gomes M; Pádua AAH
    Front Chem; 2019; 7():223. PubMed ID: 31058129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.
    Wang J; Manga KK; Bao Q; Loh KP
    J Am Chem Soc; 2011 Jun; 133(23):8888-91. PubMed ID: 21557613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypyrenes as High-Performance Cathode Materials for Aluminum Batteries.
    Walter M; Kravchyk KV; Böfer C; Widmer R; Kovalenko MV
    Adv Mater; 2018 Apr; 30(15):e1705644. PubMed ID: 29512211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries.
    Pan CJ; Yuan C; Zhu G; Zhang Q; Huang CJ; Lin MC; Angell M; Hwang BJ; Kaghazchi P; Dai H
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5670-5675. PubMed ID: 29760096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT simulation of the X-ray diffraction pattern of aluminum-ion-intercalated graphite used as the cathode material of the aluminum-ion battery.
    Li J; Liu Q; Flores RA; Lemmon J; Bligaard T
    Phys Chem Chem Phys; 2020 Mar; 22(10):5969-5975. PubMed ID: 32123887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids.
    Lu J; Yang JX; Wang J; Lim A; Wang S; Loh KP
    ACS Nano; 2009 Aug; 3(8):2367-75. PubMed ID: 19702326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Performance of Graphitic Multi-walled Carbon Nanotubes with Different Aspect Ratios as Cathode Materials for Aluminum-ion Batteries.
    Hou L; Cao H; Han M; Lv Z; Zhou S; Chen H; Du H; Cai M; Zhou Y; Meng C; Bian Y; Lin MC
    ChemistryOpen; 2020 Aug; 9(8):812-817. PubMed ID: 32775143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.
    Sun XG; Bi Z; Liu H; Fang Y; Bridges CA; Paranthaman MP; Dai S; Brown GM
    Chem Commun (Camb); 2016 Jan; 52(8):1713-6. PubMed ID: 26666453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.