BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 28973044)

  • 1. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.
    Wu L; Li M; Tian L; Wang S; Wu L; Ku L; Zhang J; Song X; Liu H; Chen Y
    PLoS One; 2017; 12(10):e0185838. PubMed ID: 28973044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize.
    Sekhon RS; Childs KL; Santoro N; Foster CE; Buell CR; de Leon N; Kaeppler SM
    Plant Physiol; 2012 Aug; 159(4):1730-44. PubMed ID: 22732243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the Regulatory Network of Leaf Premature Senescence in Maize (
    Chai M; Guo Z; Shi X; Li Y; Tang J; Zhang Z
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31752425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional analyses of natural leaf senescence in maize.
    Zhang WY; Xu YC; Li WL; Yang L; Yue X; Zhang XS; Zhao XY
    PLoS One; 2014; 9(12):e115617. PubMed ID: 25532107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of the molecular regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in maize.
    Song Y; Zhang Z; Tan X; Jiang Y; Gao J; Lin L; Wang Z; Ren J; Wang X; Qin L; Cheng W; Qi J; Kuai B
    Sci Rep; 2016 Jul; 6():29843. PubMed ID: 27435114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.).
    Yang M; Geng M; Shen P; Chen X; Li Y; Wen X
    Plant Physiol Biochem; 2019 Feb; 135():304-309. PubMed ID: 30599307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic analysis of the maize responses to early leaf senescence induced by preventing pollination.
    Wu L; Wang S; Tian L; Wu L; Li M; Zhang J; Li P; Zhang W; Chen Y
    J Proteomics; 2018 Apr; 177():75-87. PubMed ID: 29454112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined physiological, transcriptome, and genetic analysis reveals a molecular network of nitrogen remobilization in maize.
    Gong X; Liu X; Pan Q; Mi G; Chen F; Yuan L
    J Exp Bot; 2020 Aug; 71(16):5061-5073. PubMed ID: 32392584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress.
    Shi J; Yan B; Lou X; Ma H; Ruan S
    BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive dynamic transcriptome analysis at two seed germination stages in maize (Zea mays L.).
    Han Z; Wang B; Tian L; Wang S; Zhang J; Guo S; Zhang H; Xu L; Chen Y
    Physiol Plant; 2020 Jan; 168(1):205-217. PubMed ID: 30767243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analysis reveals major genes, transcription factors and biosynthetic pathways associated with leaf senescence in rice under different nitrogen application.
    Zhang Y; Wang N; He C; Gao Z; Chen G
    BMC Plant Biol; 2024 May; 24(1):419. PubMed ID: 38760728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic transcriptome of waxy maize (Zea mays L. sinensis Kulesh) during seed development.
    Gu W; Yu D; Guan Y; Wang H; Qin T; Sun P; Hu Y; Wei J; Zheng H
    Genes Genomics; 2020 Sep; 42(9):997-1010. PubMed ID: 32676852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. microRNA-dependent gene regulatory networks in maize leaf senescence.
    Wu X; Ding D; Shi C; Xue Y; Zhang Z; Tang G; Tang J
    BMC Plant Biol; 2016 Mar; 16():73. PubMed ID: 27000050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism.
    Zhang S; Yang W; Zhao Q; Zhou X; Jiang L; Ma S; Liu X; Li Y; Zhang C; Fan Y; Chen R
    BMC Genomics; 2016 Feb; 17():129. PubMed ID: 26911482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage.
    Hwang SG; Kim KH; Lee BM; Moon JC
    Genes Genomics; 2018 Jul; 40(7):755-766. PubMed ID: 29934814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of the maize transcription factor ZmVQ52 accelerates leaf senescence in Arabidopsis.
    Yu T; Lu X; Bai Y; Mei X; Guo Z; Liu C; Cai Y
    PLoS One; 2019; 14(8):e0221949. PubMed ID: 31469881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of water-deficit on tassel development in maize.
    Li W; Hao Z; Pang J; Zhang M; Wang N; Li X; Li W; Wang L; Xu M
    Gene; 2019 Jan; 681():86-92. PubMed ID: 30253182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials.
    McLaughlin JE; Boyer JS
    Ann Bot; 2004 Nov; 94(5):675-89. PubMed ID: 15355866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome Analysis Provides Insight into the Molecular Mechanisms Underlying
    Wang M; Chen Z; Zhang H; Chen H; Gao X
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29899298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression profile analysis of maize in response to Setosphaeria turcica.
    Shi F; Zhang Y; Wang K; Meng Q; Liu X; Ma L; Li Y; Liu J; Ma L
    Gene; 2018 Jun; 659():100-108. PubMed ID: 29548860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.