BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28973438)

  • 1. p53 regulates enhancer accessibility and activity in response to DNA damage.
    Younger ST; Rinn JL
    Nucleic Acids Res; 2017 Sep; 45(17):9889-9900. PubMed ID: 28973438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of p53-dependent transcription and enhancer activity by the p53 family member p63.
    Karsli Uzunbas G; Ahmed F; Sammons MA
    J Biol Chem; 2019 Jul; 294(27):10720-10736. PubMed ID: 31113863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage.
    Younger ST; Kenzelmann-Broz D; Jung H; Attardi LD; Rinn JL
    Nucleic Acids Res; 2015 May; 43(9):4447-62. PubMed ID: 25883152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A p53 enhancer region regulates target genes through chromatin conformations in cis and in trans.
    Link N; Kurtz P; O'Neal M; Garcia-Hughes G; Abrams JM
    Genes Dev; 2013 Nov; 27(22):2433-8. PubMed ID: 24240233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity.
    Sammons MA; Zhu J; Drake AM; Berger SL
    Genome Res; 2015 Feb; 25(2):179-88. PubMed ID: 25391375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p53 binds and represses the HBV enhancer: an adjacent enhancer element can reverse the transcription effect of p53.
    Ori A; Zauberman A; Doitsh G; Paran N; Oren M; Shaul Y
    EMBO J; 1998 Jan; 17(2):544-53. PubMed ID: 9430645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. eRNAs are required for p53-dependent enhancer activity and gene transcription.
    Melo CA; Drost J; Wijchers PJ; van de Werken H; de Wit E; Oude Vrielink JA; Elkon R; Melo SA; Léveillé N; Kalluri R; de Laat W; Agami R
    Mol Cell; 2013 Feb; 49(3):524-35. PubMed ID: 23273978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of chromatin context, binding site sequence content, and sequence evolution in stress-induced p53 occupancy and transactivation.
    Su D; Wang X; Campbell MR; Song L; Safi A; Crawford GE; Bell DA
    PLoS Genet; 2015 Jan; 11(1):e1004885. PubMed ID: 25569532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of universal and cell-type specific p53 DNA binding.
    Hafner A; Kublo L; Tsabar M; Lahav G; Stewart-Ornstein J
    BMC Mol Cell Biol; 2020 Feb; 21(1):5. PubMed ID: 32070277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oncogenic YAP mediates changes in chromatin accessibility and activity that drive cell cycle gene expression and cell migration.
    Fetiva MC; Liss F; Gertzmann D; Thomas J; Gantert B; Vogl M; Sira N; Weinstock G; Kneitz S; Ade CP; Gaubatz S
    Nucleic Acids Res; 2023 May; 51(9):4266-4283. PubMed ID: 36864753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network based model effectively predicts enhancers from clinical ATAC-seq samples.
    Thibodeau A; Uyar A; Khetan S; Stitzel ML; Ucar D
    Sci Rep; 2018 Oct; 8(1):16048. PubMed ID: 30375457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding enhancers using massively parallel reporter assays.
    Inoue F; Ahituv N
    Genomics; 2015 Sep; 106(3):159-164. PubMed ID: 26072433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay.
    Kheradpour P; Ernst J; Melnikov A; Rogov P; Wang L; Zhang X; Alston J; Mikkelsen TS; Kellis M
    Genome Res; 2013 May; 23(5):800-11. PubMed ID: 23512712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses.
    Kenzelmann Broz D; Spano Mello S; Bieging KT; Jiang D; Dusek RL; Brady CA; Sidow A; Attardi LD
    Genes Dev; 2013 May; 27(9):1016-31. PubMed ID: 23651856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-genome cartography of p53 response elements ranked on transactivation potential.
    Tebaldi T; Zaccara S; Alessandrini F; Bisio A; Ciribilli Y; Inga A
    BMC Genomics; 2015 Jun; 16(1):464. PubMed ID: 26081755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcription factor GLI1 cooperates with the chromatin remodeler SMARCA2 to regulate chromatin accessibility at distal DNA regulatory elements.
    Safgren SL; Olson RLO; Vrabel AM; Almada LL; Marks DL; Hernandez-Alvarado N; Gaspar-Maia A; Fernandez-Zapico ME
    J Biol Chem; 2020 Jun; 295(26):8725-8735. PubMed ID: 32376693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin immunoprecipitation-on-chip reveals stress-dependent p53 occupancy in primary normal cells but not in established cell lines.
    Shaked H; Shiff I; Kott-Gutkowski M; Siegfried Z; Haupt Y; Simon I
    Cancer Res; 2008 Dec; 68(23):9671-7. PubMed ID: 19047144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of p53 transcriptional programs in B cells upon exposure to genotoxic stress in vivo.
    Tonelli C; Morelli MJ; Bianchi S; Rotta L; Capra T; Sabò A; Campaner S; Amati B
    Oncotarget; 2015 Sep; 6(28):24611-26. PubMed ID: 26372730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin accessibility landscape of articular knee cartilage reveals aberrant enhancer regulation in osteoarthritis.
    Liu Y; Chang JC; Hon CC; Fukui N; Tanaka N; Zhang Z; Lee MTM; Minoda A
    Sci Rep; 2018 Oct; 8(1):15499. PubMed ID: 30341348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial control of the bradykinin B2 receptor promoter by p53, CREB, KLF-4, and CBP: implications for terminal nephron differentiation.
    Saifudeen Z; Dipp S; Fan H; El-Dahr SS
    Am J Physiol Renal Physiol; 2005 May; 288(5):F899-909. PubMed ID: 15632413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.