BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 28973555)

  • 1. The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome.
    Chi L; Bian X; Gao B; Tu P; Ru H; Lu K
    Toxicol Sci; 2017 Dec; 160(2):193-204. PubMed ID: 28973555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis.
    Lu K; Abo RP; Schlieper KA; Graffam ME; Levine S; Wishnok JS; Swenberg JA; Tannenbaum SR; Fox JG
    Environ Health Perspect; 2014 Mar; 122(3):284-91. PubMed ID: 24413286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex-Specific Effects of Arsenic Exposure on the Trajectory and Function of the Gut Microbiome.
    Chi L; Bian X; Gao B; Ru H; Tu P; Lu K
    Chem Res Toxicol; 2016 Jun; 29(6):949-51. PubMed ID: 27268458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of metagenomics in the human gut microbiome.
    Wang WL; Xu SY; Ren ZG; Tao L; Jiang JW; Zheng SS
    World J Gastroenterol; 2015 Jan; 21(3):803-14. PubMed ID: 25624713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Editor's Highlight: OrganophosphateDiazinon Altered Quorum Sensing, Cell Motility, Stress Response, and Carbohydrate Metabolism of Gut Microbiome.
    Gao B; Bian X; Chi L; Tu P; Ru H; Lu K
    Toxicol Sci; 2017 Jun; 157(2):354-364. PubMed ID: 28369659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bisphenol A alters gut microbiome: Comparative metagenomics analysis.
    Lai KP; Chung YT; Li R; Wan HT; Wong CK
    Environ Pollut; 2016 Nov; 218():923-930. PubMed ID: 27554980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions.
    Gao B; Bian X; Mahbub R; Lu K
    Environ Health Perspect; 2017 Feb; 125(2):198-206. PubMed ID: 27203275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From the Cover: Exposure to Oral Antibiotics Induces Gut Microbiota Dysbiosis Associated with Lipid Metabolism Dysfunction and Low-Grade Inflammation in Mice.
    Jin Y; Wu Y; Zeng Z; Jin C; Wu S; Wang Y; Fu Z
    Toxicol Sci; 2016 Nov; 154(1):140-152. PubMed ID: 27503388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subchronic Exposure of Mice to Cadmium Perturbs Their Hepatic Energy Metabolism and Gut Microbiome.
    Zhang S; Jin Y; Zeng Z; Liu Z; Fu Z
    Chem Res Toxicol; 2015 Oct; 28(10):2000-9. PubMed ID: 26352046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron.
    Guo X; Liu S; Wang Z; Zhang XX; Li M; Wu B
    Chemosphere; 2014 Oct; 112():1-8. PubMed ID: 25048881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise attenuates PCB-induced changes in the mouse gut microbiome.
    Choi JJ; Eum SY; Rampersaud E; Daunert S; Abreu MT; Toborek M
    Environ Health Perspect; 2013 Jun; 121(6):725-30. PubMed ID: 23632211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profound perturbation induced by triclosan exposure in mouse gut microbiome: a less resilient microbial community with elevated antibiotic and metal resistomes.
    Gao B; Tu P; Bian X; Chi L; Ru H; Lu K
    BMC Pharmacol Toxicol; 2017 Jun; 18(1):46. PubMed ID: 28606169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis.
    Song H; Yoo Y; Hwang J; Na YC; Kim HS
    J Allergy Clin Immunol; 2016 Mar; 137(3):852-60. PubMed ID: 26431583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral Sub-chronic Ochratoxin A Exposure Induces Gut Microbiota Alterations in Mice.
    Izco M; Vettorazzi A; de Toro M; Sáenz Y; Alvarez-Erviti L
    Toxins (Basel); 2021 Feb; 13(2):. PubMed ID: 33535685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways.
    Gao B; Chi L; Mahbub R; Bian X; Tu P; Ru H; Lu K
    Chem Res Toxicol; 2017 Apr; 30(4):996-1005. PubMed ID: 28234468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From basic to applied research: lessons from the human microbiome projects.
    Robles-Alonso V; Guarner F
    J Clin Gastroenterol; 2014; 48 Suppl 1():S3-4. PubMed ID: 25291122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.
    Forslund K; Hildebrand F; Nielsen T; Falony G; Le Chatelier E; Sunagawa S; Prifti E; Vieira-Silva S; Gudmundsdottir V; Pedersen HK; Arumugam M; Kristiansen K; Voigt AY; Vestergaard H; Hercog R; Costea PI; Kultima JR; Li J; Jørgensen T; Levenez F; Dore J; ; Nielsen HB; Brunak S; Raes J; Hansen T; Wang J; Ehrlich SD; Bork P; Pedersen O
    Nature; 2015 Dec; 528(7581):262-266. PubMed ID: 26633628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease.
    Li N; Dai Z; Wang Z; Deng Z; Zhang J; Pu J; Cao W; Pan T; Zhou Y; Yang Z; Li J; Li B; Ran P
    Respir Res; 2021 Oct; 22(1):274. PubMed ID: 34696775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study.
    Rothenberg SE; Keiser S; Ajami NJ; Wong MC; Gesell J; Petrosino JF; Johs A
    Toxicol Lett; 2016 Feb; 242():60-67. PubMed ID: 26626101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered gut microbiota in Rett syndrome.
    Strati F; Cavalieri D; Albanese D; De Felice C; Donati C; Hayek J; Jousson O; Leoncini S; Pindo M; Renzi D; Rizzetto L; Stefanini I; Calabrò A; De Filippo C
    Microbiome; 2016 Jul; 4(1):41. PubMed ID: 27473171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.