BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 28974053)

  • 21. A simple chemical free arsenic removal method for community water supply--a case study from West Bengal, India.
    Sen Gupta B; Chatterjee S; Rott U; Kauffman H; Bandopadhyay A; DeGroot W; Nag NK; Carbonell-Barrachina AA; Mukherjee S
    Environ Pollut; 2009 Dec; 157(12):3351-3. PubMed ID: 19819054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences.
    Bhowmick S; Nath B; Halder D; Biswas A; Majumder S; Mondal P; Chakraborty S; Nriagu J; Bhattacharya P; Iglesias M; Roman-Ross G; Guha Mazumder D; Bundschuh J; Chatterjee D
    J Hazard Mater; 2013 Nov; 262():915-23. PubMed ID: 22999019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of groundwater composition on subsurface iron and arsenic removal.
    Moed DH; van Halem D; Verberk JQ; Amy GL; van Dijk JC
    Water Sci Technol; 2012; 66(1):173-8. PubMed ID: 22678215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system-Towards sustainable drinking water production.
    Schmidt SA; Gukelberger E; Hermann M; Fiedler F; Großmann B; Hoinkis J; Ghosh A; Chatterjee D; Bundschuh J
    J Hazard Mater; 2016 Nov; 318():671-678. PubMed ID: 27497227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of orthophosphate and dissolved oxygen in the performance of arsenic-iron removal plants in Bangladesh.
    Brennan RT; McBean EA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(4):426-35. PubMed ID: 21391037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment.
    van Genuchten CM; Bandaru SR; Surorova E; Amrose SE; Gadgil AJ; Peña J
    Chemosphere; 2016 Jun; 153():270-9. PubMed ID: 27018519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption and removal of arsenic from water by iron ore mining waste.
    Nguyen TV; Nguyen TV; Pham TL; Vigneswaran S; Ngo HH; Kandasamy J; Nguyen HK; Nguyen DT
    Water Sci Technol; 2009; 60(9):2301-8. PubMed ID: 19901461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.
    Mirecki JE; Bennett MW; López-Baláez MC
    Ground Water; 2013; 51(4):539-49. PubMed ID: 23106789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron-based subsurface arsenic removal (SAR): Results of a long-term pilot-scale test in Vietnam.
    Cañas Kurz EE; Luong VT; Hellriegel U; Leidinger F; Luu TL; Bundschuh J; Hoinkis J
    Water Res; 2020 Aug; 181():115929. PubMed ID: 32505884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale.
    Casentini B; Falcione FT; Amalfitano S; Fazi S; Rossetti S
    Water Res; 2016 Dec; 106():135-145. PubMed ID: 27710797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subsurface iron and arsenic removal: low-cost technology for community-based water supply in Bangladesh.
    van Halem D; Heijman SG; Johnston R; Huq IM; Ghosh SK; Verberk JQ; Amy GL; van Dijk JC
    Water Sci Technol; 2010; 62(11):2702-9. PubMed ID: 21099059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of community-based arsenic removal systems in remote villages in West Bengal, India: assessment of decade-long operation.
    Sarkar S; Greenleaf JE; Gupta A; Ghosh D; Blaney LM; Bandyopadhyay P; Biswas RK; Dutta AK; Sengupta AK
    Water Res; 2010 Nov; 44(19):5813-22. PubMed ID: 20728196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenate removal by zero valent iron: batch and column tests.
    Biterna M; Arditsoglou A; Tsikouras E; Voutsa D
    J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ineffectiveness and poor reliability of arsenic removal plants in West Bengal, India.
    Hossain MA; Sengupta MK; Ahamed S; Rahman MM; Mondal D; Lodh D; Das B; Nayak B; Roy BK; Mukherjee A; Chakraborti D
    Environ Sci Technol; 2005 Jun; 39(11):4300-6. PubMed ID: 15984813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes.
    Kowalski KP; Søgaard EG
    Chemosphere; 2014 Dec; 117():108-14. PubMed ID: 24996201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fate of low arsenic concentrations during full-scale aeration and rapid filtration.
    Gude JCJ; Rietveld LC; van Halem D
    Water Res; 2016 Jan; 88():566-574. PubMed ID: 26547752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects.
    Luong VT; Cañas Kurz EE; Hellriegel U; Luu TL; Hoinkis J; Bundschuh J
    Water Res; 2018 Apr; 133():110-122. PubMed ID: 29367047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological filtration for removal of arsenic from drinking water.
    Pokhrel D; Viraraghavan T
    J Environ Manage; 2009 Apr; 90(5):1956-61. PubMed ID: 19231065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
    Xu P; Capito M; Cath TY
    J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.