These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
825 related articles for article (PubMed ID: 28974260)
1. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Bearden RN; Huggins SS; Cummings KJ; Smith R; Gregory CA; Saunders WB Stem Cell Res Ther; 2017 Oct; 8(1):218. PubMed ID: 28974260 [TBL] [Abstract][Full Text] [Related]
2. Donor-matched functional and molecular characterization of canine mesenchymal stem cells derived from different origins. Ock SA; Maeng GH; Lee YM; Kim TH; Kumar BM; Lee SL; Rho GJ Cell Transplant; 2013; 22(12):2311-21. PubMed ID: 23068964 [TBL] [Abstract][Full Text] [Related]
3. Optimizing In Vitro Osteogenesis in Canine Autologous and Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells with Dexamethasone and BMP-2. Gasson SB; Dobson LK; Chow L; Dow S; Gregory CA; Saunders WB Stem Cells Dev; 2021 Feb; 30(4):214-226. PubMed ID: 33356875 [TBL] [Abstract][Full Text] [Related]
4. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. Sasaki A; Mizuno M; Ozeki N; Katano H; Otabe K; Tsuji K; Koga H; Mochizuki M; Sekiya I PLoS One; 2018; 13(8):e0202922. PubMed ID: 30138399 [TBL] [Abstract][Full Text] [Related]
5. Differentiation and characterization of rat adipose tissue mesenchymal stem cells into endothelial-like cells. Cannella V; Piccione G; Altomare R; Marino A; Di Marco P; Russotto L; Di Bella S; Purpari G; Gucciardi F; Cassata G; Damiano G; Palumbo VD; Santoro A; Russo Lacerna C; Lo Monte AI; Guercio A Anat Histol Embryol; 2018 Feb; 47(1):11-20. PubMed ID: 29094769 [TBL] [Abstract][Full Text] [Related]
6. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029 [TBL] [Abstract][Full Text] [Related]
7. Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells. Russell KA; Chow NH; Dukoff D; Gibson TW; LaMarre J; Betts DH; Koch TG PLoS One; 2016; 11(12):e0167442. PubMed ID: 27907211 [TBL] [Abstract][Full Text] [Related]
8. Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2. Pierantozzi E; Gava B; Manini I; Roviello F; Marotta G; Chiavarelli M; Sorrentino V Stem Cells Dev; 2011 May; 20(5):915-23. PubMed ID: 20879854 [TBL] [Abstract][Full Text] [Related]
9. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Kisiel AH; McDuffee LA; Masaoud E; Bailey TR; Esparza Gonzalez BP; Nino-Fong R Am J Vet Res; 2012 Aug; 73(8):1305-17. PubMed ID: 22849692 [TBL] [Abstract][Full Text] [Related]
10. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Heo JS; Choi Y; Kim HS; Kim HO Int J Mol Med; 2016 Jan; 37(1):115-25. PubMed ID: 26719857 [TBL] [Abstract][Full Text] [Related]
11. The human arthritic hip joint is a source of mesenchymal stromal cells (MSCs) with extensive multipotent differentiation potential. Wagenbrenner M; Heinz T; Horas K; Jakuscheit A; Arnholdt J; Herrmann M; Rudert M; Holzapfel BM; Steinert AF; Weißenberger M BMC Musculoskelet Disord; 2020 May; 21(1):297. PubMed ID: 32404085 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic proliferation and differentiation of canine bone marrow and adipose tissue derived mesenchymal stromal cells and the influence of hypoxia. Chung DJ; Hayashi K; Toupadakis CA; Wong A; Yellowley CE Res Vet Sci; 2012 Feb; 92(1):66-75. PubMed ID: 21075407 [TBL] [Abstract][Full Text] [Related]
13. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Yoshimura H; Muneta T; Nimura A; Yokoyama A; Koga H; Sekiya I Cell Tissue Res; 2007 Mar; 327(3):449-62. PubMed ID: 17053900 [TBL] [Abstract][Full Text] [Related]
14. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells. Radtke CL; Nino-Fong R; Esparza Gonzalez BP; Stryhn H; McDuffee LA Am J Vet Res; 2013 May; 74(5):790-800. PubMed ID: 23627394 [TBL] [Abstract][Full Text] [Related]
15. Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects "stemness" properties. Bakopoulou A; Apatzidou D; Aggelidou E; Gousopoulou E; Leyhausen G; Volk J; Kritis A; Koidis P; Geurtsen W Stem Cell Res Ther; 2017 Nov; 8(1):247. PubMed ID: 29096714 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Djouad F; Bony C; Häupl T; Uzé G; Lahlou N; Louis-Plence P; Apparailly F; Canovas F; Rème T; Sany J; Jorgensen C; Noël D Arthritis Res Ther; 2005; 7(6):R1304-15. PubMed ID: 16277684 [TBL] [Abstract][Full Text] [Related]
17. Effect of ectopic OCT4 expression on canine adipose tissue-derived mesenchymal stem cell proliferation. Han SH; Jang G; Bae BK; Han SM; Koh YR; Ahn JO; Jung WS; Kang SK; Ra JC; Lee HW; Youn HY Cell Biol Int; 2014 Oct; 38(10):1163-73. PubMed ID: 24797505 [TBL] [Abstract][Full Text] [Related]
18. In vitro characterization of bone marrow stromal cells from osteoarthritic donors. Stiehler M; Rauh J; Bünger C; Jacobi A; Vater C; Schildberg T; Liebers C; Günther KP; Bretschneider H Stem Cell Res; 2016 May; 16(3):782-9. PubMed ID: 27155399 [TBL] [Abstract][Full Text] [Related]
19. Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells from the Tasmanian Devil ( Weeratunga P; Shahsavari A; Fennis E; Wolvetang EJ; Ovchinnikov DA; Whitworth DJ Stem Cells Dev; 2020 Jan; 29(1):25-37. PubMed ID: 31709909 [TBL] [Abstract][Full Text] [Related]
20. NANOG Plays a Hierarchical Role in the Transcription Network Regulating the Pluripotency and Plasticity of Adipose Tissue-Derived Stem Cells. Pitrone M; Pizzolanti G; Tomasello L; Coppola A; Morini L; Pantuso G; Ficarella R; Guarnotta V; Perrini S; Giorgino F; Giordano C Int J Mol Sci; 2017 May; 18(6):. PubMed ID: 28545230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]