These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 28974336)

  • 1. Phenol degradation catalyzed by a peroxidase mimic constructed through the grafting of heme onto metal-organic frameworks.
    Jiang W; Yang J; Wang X; Han H; Yang Y; Tang J; Li Q
    Bioresour Technol; 2018 Jan; 247():1246-1248. PubMed ID: 28974336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A peroxidase mimic with atom transfer radical polymerization activity constructed through the grafting of heme onto metal-organic frameworks.
    Jiang W; Pan Y; Yang J; Liu Y; Yang Y; Tang J; Li Q
    J Colloid Interface Sci; 2018 Jul; 521():62-68. PubMed ID: 29549766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strengthened Fenton degradation of phenol catalyzed by core/shell Fe-Pd@C nanocomposites derived from mechanochemically synthesized Fe-Metal organic frameworks.
    He D; Niu H; He S; Mao L; Cai Y; Liang Y
    Water Res; 2019 Oct; 162():151-160. PubMed ID: 31265931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zr(IV)-based metal-organic framework nanocomposites with enhanced peroxidase-like activity as a colorimetric sensing platform for sensitive detection of hydrogen peroxide and phenol.
    Wang J; Zhou Y; Zeng M; Zhao Y; Zuo X; Meng F; Lv F; Lu Y
    Environ Res; 2022 Jan; 203():111818. PubMed ID: 34363805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deuterohemin-Peptide Enzyme Mimic-Embedded Metal-Organic Frameworks through Biomimetic Mineralization with Efficient ATRP Catalytic Activity.
    Jiang W; Wang X; Chen J; Liu Y; Han H; Ding Y; Li Q; Tang J
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26948-26957. PubMed ID: 28724289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst.
    Wang Y; Liang M; Fang J; Fu J; Chen X
    Chemosphere; 2017 Sep; 182():468-476. PubMed ID: 28521161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-Metal Organic Framework Hybrid Composites with Intrinsic Peroxidase-like Activity as a Colorimetric Biosensing Platform.
    Yin Y; Gao C; Xiao Q; Lin G; Lin Z; Cai Z; Yang H
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):29052-29061. PubMed ID: 27700042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxidase/hydrogen peroxide--or bone marrow homogenate/hydrogen peroxide--mediated activation of phenol and binding to protein.
    Subrahmanyam VV; McGirr LG; O'Brien PJ
    Xenobiotica; 1990 Dec; 20(12):1369-78. PubMed ID: 2075753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol.
    Kavitha V; Palanivelu K
    Chemosphere; 2004 Jun; 55(9):1235-43. PubMed ID: 15081764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxidase catalytic cycle of MCM-41-entrapped microperoxidase-11 as a mechanism for phenol oxidation.
    Araujo JC; Prieto T; Prado FM; Trindade FJ; Nunes GL; dos Santos JG; Di Mascio P; Castro FL; Fernandes GJ; Fernandes VJ; Araujo AS; Politi MJ; Brochsztain S; Nascimento OR; Nantes IL
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3643-52. PubMed ID: 18330186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxidation and inactivation of poison ivy irritants and other phenolic derivatives by peroxidase and hydrogen peroxide.
    SIZER IW
    Anat Rec; 1946 Mar; 94():429. PubMed ID: 21066200
    [No Abstract]   [Full Text] [Related]  

  • 12. Structural change and catalytic activity of horseradish peroxidase in oxidative polymerization of phenol.
    Akita M; Tsutsumi D; Kobayashi M; Kise H
    Biosci Biotechnol Biochem; 2001 Jul; 65(7):1581-8. PubMed ID: 11515542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2.
    Wang WM; Song J; Han X
    J Hazard Mater; 2013 Nov; 262():412-9. PubMed ID: 24076478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An enzymatic method for removal of phenol from industrial effluent.
    Singh N; Singh J
    Prep Biochem Biotechnol; 2002 May; 32(2):127-33. PubMed ID: 12071643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensified-Fenton process for the treatment of phenol aqueous solutions.
    Pariente MI; Molina R; Melero JA; Botas JÁ; Martínez F
    Water Sci Technol; 2015; 71(3):359-65. PubMed ID: 25714634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-organic frameworks with peroxidase-like activity for efficient removal of aflatoxin B
    Wei J; Wu X; Wu C; Hou F; Wu L; Huang H
    Food Chem; 2022 Jun; 378():132037. PubMed ID: 35045371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenol oxidation product(s), formed by a peroxidase reaction, that bind to DNA.
    Subrahmanyam VV; O'Brien PJ
    Xenobiotica; 1985 Oct; 15(10):873-85. PubMed ID: 4072251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic activation of phenol by human myeloperoxidase and horseradish peroxidase.
    Eastmond DA; Smith MT; Ruzo LO; Ross D
    Mol Pharmacol; 1986 Dec; 30(6):674-9. PubMed ID: 3023815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified microperoxidases exhibit different reactivity towards phenolic substrates.
    Dallacosta C; Casella L; Monzani E
    Chembiochem; 2004 Dec; 5(12):1692-9. PubMed ID: 15532028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of lignin peroxidase by hydrogen peroxide during the oxidation of phenols.
    Chung N; Aust SD
    Arch Biochem Biophys; 1995 Feb; 316(2):851-5. PubMed ID: 7864643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.