BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28974475)

  • 1. Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn.
    Huang W; Zaheri A; Jung JY; Espinosa HD; Mckittrick J
    Acta Biomater; 2017 Dec; 64():1-14. PubMed ID: 28974475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties.
    Johnson KL; Trim MW; Francis DK; Whittington WR; Miller JA; Bennett CE; Horstemeyer MF
    Acta Biomater; 2017 Jan; 48():300-308. PubMed ID: 27793720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure, elastic properties and deformation mechanisms of horn keratin.
    Tombolato L; Novitskaya EE; Chen PY; Sheppard FA; McKittrick J
    Acta Biomater; 2010 Feb; 6(2):319-30. PubMed ID: 19577667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and mechanical properties of different keratinous horns.
    Zhang Y; Huang W; Hayashi C; Gatesy J; McKittrick J
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn keratin.
    Trim MW; Horstemeyer MF; Rhee H; El Kadiri H; Williams LN; Liao J; Walters KB; McKittrick J; Park SJ
    Acta Biomater; 2011 Mar; 7(3):1228-40. PubMed ID: 21095245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of ramming in Ovis canadensis.
    Maity P; Tekalur SA
    J Biomech Eng; 2011 Feb; 133(2):021009. PubMed ID: 21280881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Horn and horn core trabecular bone of bighorn sheep rams absorbs impact energy and reduces brain cavity accelerations during high impact ramming of the skull.
    Drake A; Haut Donahue TL; Stansloski M; Fox K; Wheatley BB; Donahue SW
    Acta Biomater; 2016 Oct; 44():41-50. PubMed ID: 27544811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The morphology of the interfacial tissue between bighorn sheep horn and bony horncore increases contact surface to enhance strength and facilitate load transfer from the horn to the horncore.
    Fuller LH; Marcet EC; Agarkov LL; Singh P; Donahue SW
    Acta Biomater; 2024 Jan; 174():258-268. PubMed ID: 38072223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A natural energy absorbent polymer composite: The equine hoof wall.
    Huang W; Yaraghi NA; Yang W; Velazquez-Olivera A; Li Z; Ritchie RO; Kisailus D; Stover SM; McKittrick J
    Acta Biomater; 2019 May; 90():267-277. PubMed ID: 30951896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How the geometry and mechanics of bighorn sheep horns mitigate the effects of impact and reduce the head injury criterion.
    Wheatley BB; Gilmore EC; Fuller LH; Drake AM; Donahue SW
    Bioinspir Biomim; 2023 Feb; 18(2):. PubMed ID: 36652719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties and failure deformation mechanisms of yak horn under quasi-static compression and dynamic impact.
    Liu S; Xu S; Song J; Zhou J; Xu L; Li X; Zou M
    J Mech Behav Biomed Mater; 2020 Jul; 107():103753. PubMed ID: 32364949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material properties of bighorn sheep (Ovis canadensis) horncore bone with implications for energy absorption during impacts.
    Fuller LH; Donahue SW
    J Mech Behav Biomed Mater; 2021 Feb; 114():104224. PubMed ID: 33296863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and mechanical properties of horns derived from three domestic bovines.
    Zhang QB; Li C; Pan YT; Shan GH; Cao P; He J; Lin ZS; Ao NJ; Huang YX
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):5036-43. PubMed ID: 24094221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and mechanical properties of sheep horn.
    Zhu B; Zhang M; Zhao J
    Microsc Res Tech; 2016 Jul; 79(7):664-74. PubMed ID: 27184115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired material architectures from bighorn sheep horncore velar bone for impact loading applications.
    Aguirre TG; Fuller L; Ingrole A; Seek TW; Wheatley BB; Steineman BD; Donahue TLH; Donahue SW
    Sci Rep; 2020 Nov; 10(1):18916. PubMed ID: 33144662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-dependent relationship between horn growth and survival in wild sheep.
    Bonenfant C; Pelletier F; Garel M; Bergeron P
    J Anim Ecol; 2009 Jan; 78(1):161-71. PubMed ID: 19120602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscale compressive behavior of hydrated lamellar bone at high strain rates.
    Peruzzi C; Ramachandramoorthy R; Groetsch A; Casari D; Grönquist P; Rüggeberg M; Michler J; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():403-414. PubMed ID: 34245895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales.
    Wang B; Yang W; Sherman VR; Meyers MA
    Acta Biomater; 2016 Sep; 41():60-74. PubMed ID: 27221793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-property relationships of velar bone tissue from the energy absorbing horncore of bighorn sheep rams.
    Fuller LH; Karimy KF; Ruschke PL; Taghon MM; Crosby AJ; Donahue SW
    Acta Biomater; 2023 Aug; 166():419-429. PubMed ID: 37164299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing measures of breeding inequality and opportunity for selection with sexual selection on a quantitative character in bighorn rams.
    Martin AM; Festa-Bianchet M; Coltman DW; Pelletier F
    J Evol Biol; 2015 Jan; 28(1):223-30. PubMed ID: 25418082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.