These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Arg1 from Desmarini D; Liu G; Jessen H; Bowring B; Connolly A; Crossett B; Djordjevic JT mBio; 2024 Jun; 15(6):e0060824. PubMed ID: 38742909 [TBL] [Abstract][Full Text] [Related]
4. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix. Kong EF; Tsui C; Kucharíková S; Andes D; Van Dijck P; Jabra-Rizk MA mBio; 2016 Oct; 7(5):. PubMed ID: 27729510 [TBL] [Abstract][Full Text] [Related]
5. Antifungal and Antibiofilm Efficacy of Paeonol Treatment Against Biofilms Comprising Qian W; Li X; Liu Q; Lu J; Wang T; Zhang Q Front Cell Infect Microbiol; 2022; 12():884793. PubMed ID: 35669114 [TBL] [Abstract][Full Text] [Related]
7. Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Karkowska-Kuleta J; Rapala-Kozik M; Kozik A Acta Biochim Pol; 2009; 56(2):211-24. PubMed ID: 19543556 [TBL] [Abstract][Full Text] [Related]
8. The contest of microbial pigeon neighbors: Interspecies competition between Serratia marcescens and the human pathogen Cryptococcus neoformans. Haleva L; Lopes W; Barcellos VA; Schrank A; Vainstein MH Fungal Biol; 2020 Jul; 124(7):629-638. PubMed ID: 32540186 [TBL] [Abstract][Full Text] [Related]
9. Melanin deposition in two Chrissian C; Camacho E; Fu MS; Prados-Rosales R; Chatterjee S; Cordero RJB; Lodge JK; Casadevall A; Stark RE J Biol Chem; 2020 Feb; 295(7):1815-1828. PubMed ID: 31896575 [No Abstract] [Full Text] [Related]
10. Anti-microbial and anti-biofilm activities of combined chelerythrine-sanguinarine and mode of action against Candida albicans and Cryptococcus neoformans in vitro. Qian W; Yang M; Li X; Sun Z; Li Y; Wang X; Wang T Colloids Surf B Biointerfaces; 2020 Jul; 191():111003. PubMed ID: 32276211 [TBL] [Abstract][Full Text] [Related]
11. Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. Albuquerque P; Nicola AM; Nieves E; Paes HC; Williamson PR; Silva-Pereira I; Casadevall A mBio; 2013 Dec; 5(1):e00986-13. PubMed ID: 24381301 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of heat-shock protein 90 enhances the susceptibility to antifungals and reduces the virulence of Cryptococcus neoformans/Cryptococcus gattii species complex. Cordeiro RA; Evangelista AJJ; Serpa R; Marques FJF; Melo CVS; Oliveira JS; Franco JDS; Alencar LP; Bandeira TJPG; Brilhante RSN; Sidrim JJC; Rocha MFG Microbiology (Reading); 2016 Feb; 162(2):309-317. PubMed ID: 26645478 [TBL] [Abstract][Full Text] [Related]
13. Screening of the Pandemic Response Box Reveals an Association between Antifungal Effects of MMV1593537 and the Cell Wall of de Oliveira HC; Castelli RF; Reis FCG; Samby K; Nosanchuk JD; Alves LR; Rodrigues ML Microbiol Spectr; 2022 Jun; 10(3):e0060122. PubMed ID: 35471056 [TBL] [Abstract][Full Text] [Related]
14. Natural compounds from freshwater mussels disrupt fungal virulence determinants and influence fluconazole susceptibility in the presence of macrophages in Gutierrez-Gongora D; Woods M; Prosser RS; Geddes-McAlister J Microbiol Spectr; 2024 Mar; 12(3):e0284123. PubMed ID: 38329361 [TBL] [Abstract][Full Text] [Related]
15. [Melanin and its role on the virulence of Cryptococcus neoformans]. Alp S Mikrobiyol Bul; 2010 Jul; 44(3):519-26. PubMed ID: 21064003 [TBL] [Abstract][Full Text] [Related]
16. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall. Chatterjee S; Prados-Rosales R; Itin B; Casadevall A; Stark RE J Biol Chem; 2015 May; 290(22):13779-90. PubMed ID: 25825492 [TBL] [Abstract][Full Text] [Related]
17. Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Martinez LR; Casadevall A Antimicrob Agents Chemother; 2006 Mar; 50(3):1021-33. PubMed ID: 16495265 [TBL] [Abstract][Full Text] [Related]
18. Cryptococcus neoformans Cda1 and Its Chitin Deacetylase Activity Are Required for Fungal Pathogenesis. Upadhya R; Baker LG; Lam WC; Specht CA; Donlin MJ; Lodge JK mBio; 2018 Nov; 9(6):. PubMed ID: 30459196 [TBL] [Abstract][Full Text] [Related]
19. Iron Metabolism, Pseudohypha Production, and Biofilm Formation through a Multicopper Oxidase in the Human-Pathogenic Fungus Candida parapsilosis. Chakraborty T; Tóth Z; Tóth R; Vágvölgyi C; Gácser A mSphere; 2020 May; 5(3):. PubMed ID: 32404511 [TBL] [Abstract][Full Text] [Related]
20. Effects of a Novel Probiotic Combination on Pathogenic Bacterial-Fungal Polymicrobial Biofilms. Hager CL; Isham N; Schrom KP; Chandra J; McCormick T; Miyagi M; Ghannoum MA mBio; 2019 Apr; 10(2):. PubMed ID: 30940712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]