These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 28974671)

  • 1. Neutrophil-inspired propulsion in a combined acoustic and magnetic field.
    Ahmed D; Baasch T; Blondel N; Läubli N; Dual J; Nelson BJ
    Nat Commun; 2017 Oct; 8(1):770. PubMed ID: 28974671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rolling microswarms along acoustic virtual walls.
    Zhang Z; Sukhov A; Harting J; Malgaretti P; Ahmed D
    Nat Commun; 2022 Nov; 13(1):7347. PubMed ID: 36446799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-inspired Acousto-magnetic Microswarm Robots with Upstream Motility.
    Ahmed D; Sukhov A; Hauri D; Rodrigue D; Gian M; Harting J; Nelson B
    Nat Mach Intell; 2021 Feb; 3(2):116-124. PubMed ID: 34258513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switching from Chemical to Electrical Micromotor Propulsion across a Gradient of Gastric Fluid via Magnetic Rolling.
    Das SS; Erez S; Karshalev E; Wu Y; Wang J; Yossifon G
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30290-30298. PubMed ID: 35748802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface.
    Zhang L; Petit T; Lu Y; Kratochvil BE; Peyer KE; Pei R; Lou J; Nelson BJ
    ACS Nano; 2010 Oct; 4(10):6228-34. PubMed ID: 20873764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields.
    Golovin YI; Gribanovsky SL; Golovin DY; Klyachko NL; Majouga AG; Master АM; Sokolsky M; Kabanov AV
    J Control Release; 2015 Dec; 219():43-60. PubMed ID: 26407671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chiral magnetic nanomotors.
    Morozov KI; Leshansky AM
    Nanoscale; 2014; 6(3):1580-8. PubMed ID: 24336860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CeFlowBot: A Biomimetic Flow-Driven Microrobot that Navigates under Magneto-Acoustic Fields.
    Mohanty S; Paul A; Matos PM; Zhang J; Sikorski J; Misra S
    Small; 2022 Mar; 18(9):e2105829. PubMed ID: 34889051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetically actuated swimming and rolling erythrocyte-based biohybrid micromotors.
    Wang Q; Jermyn S; Quashie D; Gatti SE; Katuri J; Ali J
    RSC Adv; 2023 Oct; 13(44):30951-30958. PubMed ID: 37876656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enabled propulsion and control of colloidal microwheels.
    Tasci TO; Herson PS; Neeves KB; Marr DW
    Nat Commun; 2016 Jan; 7():10225. PubMed ID: 26725747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel.
    Islam AT; Siddique AH; Ramulu TS; Reddy V; Eu YJ; Cho SH; Kim C
    Biomed Microdevices; 2012 Dec; 14(6):1077-84. PubMed ID: 22983792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetically Responsive Negative Acoustic Contrast Microparticles for Bioanalytical Applications.
    Ohiri KA; Evans BA; Shields CW; Gutiérrez RA; Carroll NJ; Yellen BB; López GP
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25030-5. PubMed ID: 27622731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic dipole with a flexible tail as a self-propelling microdevice.
    Livanovičs R; Cēbers A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041502. PubMed ID: 22680478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D steerable, acoustically powered microswimmers for single-particle manipulation.
    Ren L; Nama N; McNeill JM; Soto F; Yan Z; Liu W; Wang W; Wang J; Mallouk TE
    Sci Adv; 2019 Oct; 5(10):eaax3084. PubMed ID: 31692692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propulsion Gait Analysis and Fluidic Trapping of Swinging Flexible Nanomotors.
    Ji F; Li T; Yu S; Wu Z; Zhang L
    ACS Nano; 2021 Mar; 15(3):5118-5128. PubMed ID: 33687190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly parallel acoustic assembly of microparticles into well-ordered colloidal crystallites.
    Owens CE; Shields CW; Cruz DF; Charbonneau P; López GP
    Soft Matter; 2016 Jan; 12(3):717-28. PubMed ID: 26558940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of a magnetically rotated micro swimmer inspired by paramecium metachronal wave.
    Nematollahisarvestani A; Shamloo A
    Prog Biophys Mol Biol; 2019 Mar; 142():32-42. PubMed ID: 30096335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inversion of spinning sound fields.
    Carley M
    J Acoust Soc Am; 2009 Feb; 125(2):690-7. PubMed ID: 19206846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strongly Accelerated Margination of Active Particles in Blood Flow.
    Gekle S
    Biophys J; 2016 Jan; 110(2):514-520. PubMed ID: 26789773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.