These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28974745)

  • 1. Photocatalytic Properties of Tetraphenylporphyrins Immobilized on Calcium Alginate Aerogels.
    Solovieva AB; Kopylov AS; Savko MA; Zarkhina TS; Lovskaya DD; Lebedev AE; Menshutina NV; Krivandin AV; Shershnev IV; Kotova SL; Timashev PS
    Sci Rep; 2017 Oct; 7(1):12640. PubMed ID: 28974745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles' Micromeritics.
    Rodríguez-Dorado R; López-Iglesias C; García-González CA; Auriemma G; Aquino RP; Del Gaudio P
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30884869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, drying process and medical application of polysaccharide-based aerogels.
    El-Naggar ME; Othman SI; Allam AA; Morsy OM
    Int J Biol Macromol; 2020 Feb; 145():1115-1128. PubMed ID: 31678101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of Nanofibrous Structure in Biopolymer Aerogel during Supercritical CO
    Takeshita S; Sadeghpour A; Malfait WJ; Konishi A; Otake K; Yoda S
    Biomacromolecules; 2019 May; 20(5):2051-2057. PubMed ID: 30908038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of titanium-dioxide-based aerogel catalyst with tunable nanoporosity and photocatalytic activity.
    Li H; Sunol SG; Sunol AK
    Nanotechnology; 2012 Jul; 23(29):294012. PubMed ID: 22744264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the microstructure of chitosan aerogel beads prepared by supercritical CO
    Li CG; Dang Q; Yang Q; Chen D; Zhu H; Chen J; Liu R; Wang X
    RSC Adv; 2022 Jul; 12(33):21041-21049. PubMed ID: 35919839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying.
    Gaudio PD; Auriemma G; Mencherini T; Porta GD; Reverchon E; Aquino RP
    J Pharm Sci; 2013 Jan; 102(1):185-94. PubMed ID: 23150457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel.
    Forgács A; Papp V; Paul G; Marchese L; Len A; Dudás Z; Fábián I; Gurikov P; Kalmár J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2997-3010. PubMed ID: 33401895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroscopic-Scale Preparation of Aramid Nanofiber Aerogel by Modified Freezing-Drying Method.
    Xie C; Liu S; Zhang Q; Ma H; Yang S; Guo ZX; Qiu T; Tuo X
    ACS Nano; 2021 Jun; 15(6):10000-10009. PubMed ID: 34086437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate-Based Aerogel Particles as Drug Delivery Systems: Investigation of the Supercritical Adsorption and In Vitro Evaluations.
    Lovskaya D; Menshutina N
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.
    Du A; Liu M; Huang S; Li C; Zhou B
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29937521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite Aerogel Comprised of Sodium Alginate and Bentonite via Supercritical CO
    Zhao J; Cao L; Dong Y
    Gels; 2022 Jun; 8(6):. PubMed ID: 35735703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Porous Agarose-Based Structures: Freeze-Drying vs. Supercritical CO
    Guastaferro M; Baldino L; Reverchon E; Cardea S
    Gels; 2021 Nov; 7(4):. PubMed ID: 34842697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Morphology of Poly(ether ether ketone) Aerogels.
    Talley SJ; Vivod SL; Nguyen BA; Meador MAB; Radulescu A; Moore RB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31508-31519. PubMed ID: 31379150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial Cellulose Nanofibril Porous Materials Obtained by Supercritical Impregnation of Thymol.
    Darpentigny C; Marcoux PR; Menneteau M; Michel B; Ricoul F; Jean B; Bras J; Nonglaton G
    ACS Appl Bio Mater; 2020 May; 3(5):2965-2975. PubMed ID: 35025343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties.
    Jiménez-Saelices C; Seantier B; Cathala B; Grohens Y
    Carbohydr Polym; 2017 Feb; 157():105-113. PubMed ID: 27987805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Continuous Extraction and Pumpless Supercritical CO₂ Drying System for Laboratory-Scale Aerogel Production.
    Lázár I; Fábián I
    Gels; 2016 Oct; 2(4):. PubMed ID: 30674157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cobalt Sunrise: Thermites Based on LiClO
    Rewatkar PM; Soni RU; Sotiriou-Leventis C; Leventis N
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22668-22676. PubMed ID: 31184858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of nanoporous aerogels from wheat starch.
    Ubeyitogullari A; Ciftci ON
    Carbohydr Polym; 2016 Aug; 147():125-132. PubMed ID: 27178916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-oxide aerogel and xerogel catalyst formulations: characterization by 57Fe Mössbauer and XAFS spectroscopies.
    Huggins FE; Bali S; Huffman GP; Eyring EM
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jun; 76(1):74-83. PubMed ID: 20359941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.