These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28975154)

  • 1. Liquid-like behavior of UV-irradiated interstellar ice analog at low temperatures.
    Tachibana S; Kouchi A; Hama T; Oba Y; Piani L; Sugawara I; Endo Y; Hidaka H; Kimura Y; Murata KI; Yurimoto H; Watanabe N
    Sci Adv; 2017 Sep; 3(9):eaao2538. PubMed ID: 28975154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.
    Boamah MD; Sullivan KK; Shulenberger KE; Soe CM; Jacob LM; Yhee FC; Atkinson KE; Boyer MC; Haines DR; Arumainayagam CR
    Faraday Discuss; 2014; 168():249-66. PubMed ID: 25302384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. THz time-domain spectroscopy of mixed CO2-CH3OH interstellar ice analogs.
    McGuire BA; Ioppolo S; Allodi MA; Blake GA
    Phys Chem Chem Phys; 2016 Jul; 18(30):20199-207. PubMed ID: 27306081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical reactions on interstellar icy dust grains: Experimental investigations of elementary processes.
    Tsuge M; Watanabe N
    Proc Jpn Acad Ser B Phys Biol Sci; 2023; 99(4):103-130. PubMed ID: 37121737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of interstellar ices.
    Allamandola LJ; Bernstein MP; Sandford SA; Walker RL
    Space Sci Rev; 1999; 90(1-2):219-32. PubMed ID: 11543288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interstellar ices as a source of CN-bearing molecules in protoplanetary disks.
    Whittet DC; Gibb EL; Nummelin A
    Orig Life Evol Biosph; 2001; 31(1-2):157-65. PubMed ID: 11296519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions.
    Schutte WA; Allamandola LJ; Sandford SA
    Icarus; 1993; 104():118-37. PubMed ID: 11540089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urea, glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar/pre-cometary ice analogs.
    Nuevo M; Bredehöft JH; Meierhenrich UJ; d'Hendecourt L; Thiemann WH
    Astrobiology; 2010 Mar; 10(2):245-56. PubMed ID: 20402585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex organics in laboratory simulations of interstellar/cometary ices.
    Bernstein MP; Allamandola LJ; Sandford SA
    Adv Space Res; 1997; 19(7):991-8. PubMed ID: 11541346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices.
    Moore MH; Hudson RL; Gerakines PA
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):843-58. PubMed ID: 11345258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formaldehyde and organic molecule production in astrophysical ices at cryogenic temperatures.
    Schutte WA; Allamandola LJ; Sandford SA
    Science; 1993 Feb; 259():1143-5. PubMed ID: 11540093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycine formation in CO
    Esmaili S; Bass AD; Cloutier P; Sanche L; Huels MA
    J Chem Phys; 2018 Apr; 148(16):164702. PubMed ID: 29716196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Hydronium Ion (H
    Martinez R; Agnihotri AN; Boduch P; Domaracka A; Fulvio D; Muniz G; Palumbo ME; Rothard H; Strazzulla G
    J Phys Chem A; 2019 Sep; 123(37):8001-8008. PubMed ID: 31436998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 2140 cm-1 (4.673 microns) solid CO band: the case for interstellar O2 and N2 and the photochemistry of nonpolar interstellar ice analogs.
    Elsila J; Allamandola LJ; Sandford SA
    Astrophys J; 1997 Apr; 479(2 Pt 1):818-38. PubMed ID: 11540158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irradiation of pyrimidine in pure H2O ice with high-energy ultraviolet photons.
    Nuevo M; Chen YJ; Hu WJ; Qiu JM; Wu SR; Fung HS; Chu CC; Yih TS; Ip WH; Wu CY
    Astrobiology; 2014 Feb; 14(2):119-31. PubMed ID: 24512484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VUV photoabsorption of thermally processed carbon disulfide and ammonia ice mixtures - Implications for icy objects in the solar system.
    Pavithraa S; Ramachandran R; Mifsud DV; Meka JK; Lo JI; Chou SL; Cheng BM; Rajasekhar BN; Bhardwaj A; Mason NJ; Sivaraman B
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 283():121645. PubMed ID: 36037552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs.
    Meinert C; Myrgorodska I; de Marcellus P; Buhse T; Nahon L; Hoffmann SV; d'Hendecourt Lle S; Meierhenrich UJ
    Science; 2016 Apr; 352(6282):208-12. PubMed ID: 27124456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of uracil from the ultraviolet photo-irradiation of pyrimidine in pure H2O ices.
    Nuevo M; Milam SN; Sandford SA; Elsila JE; Dworkin JP
    Astrobiology; 2009 Sep; 9(7):683-95. PubMed ID: 19778279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interstellar Enolization-Acetaldehyde (CH
    Kleimeier NF; Kaiser RI
    Chemphyschem; 2021 Jun; 22(12):1229-1236. PubMed ID: 33913232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the morphology of interstellar ice analogues after hydrogen atom exposure.
    Accolla M; Congiu E; Dulieu F; Manicò G; Chaabouni H; Matar E; Mokrane H; Lemaire JL; Pirronello V
    Phys Chem Chem Phys; 2011 May; 13(17):8037-45. PubMed ID: 21445409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.