BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28975557)

  • 1. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review.
    Bilal M; Guo S; Iqbal HMN; Hu H; Wang W; Zhang X
    World J Microbiol Biotechnol; 2017 Oct; 33(10):191. PubMed ID: 28975557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18.
    Wan Y; Liu H; Xian M; Huang W
    Microb Cell Fact; 2021 Dec; 20(1):235. PubMed ID: 34965873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine
    Guo S; Liu R; Wang W; Hu H; Li Z; Zhang X
    ACS Synth Biol; 2020 Apr; 9(4):883-892. PubMed ID: 32197042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84.
    Delaney SM; Mavrodi DV; Bonsall RF; Thomashow LS
    J Bacteriol; 2001 Jan; 183(1):318-27. PubMed ID: 11114932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation.
    Mavrodi DV; Blankenfeldt W; Thomashow LS
    Annu Rev Phytopathol; 2006; 44():417-45. PubMed ID: 16719720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of phenazine biosynthesis by RpeA and RpeB in Pseudomonas chlororaphis 30-84.
    Wang D; Yu JM; Pierson LS; Pierson EA
    Microbiology (Reading); 2012 Jul; 158(Pt 7):1745-1757. PubMed ID: 22539162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30-84 by RpeA.
    Whistler CA; Pierson LS
    J Bacteriol; 2003 Jul; 185(13):3718-25. PubMed ID: 12813064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics.
    Biessy A; Filion M
    Environ Microbiol; 2018 Nov; 20(11):3905-3917. PubMed ID: 30159978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66.
    Peng H; Zhang P; Bilal M; Wang W; Hu H; Zhang X
    Microb Cell Fact; 2018 Jul; 17(1):117. PubMed ID: 30045743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66.
    Guo S; Wang Y; Dai B; Wang W; Hu H; Huang X; Zhang X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity and evolution of the phenazine biosynthesis pathway.
    Mavrodi DV; Peever TL; Mavrodi OV; Parejko JA; Raaijmakers JM; Lemanceau P; Mazurier S; Heide L; Blankenfeldt W; Weller DM; Thomashow LS
    Appl Environ Microbiol; 2010 Feb; 76(3):866-79. PubMed ID: 20008172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Autoinduction of pyoluteorin and correlation between phenazine-1-carboxylic acid and pyoluteorin in Pseudomonas sp. M18].
    Ge YH; Zhao YH; Chen LJ; Miao J; Wen L
    Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):441-6. PubMed ID: 17672302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84.
    Maddula VS; Zhang Z; Pierson EA; Pierson LS
    Microb Ecol; 2006 Aug; 52(2):289-301. PubMed ID: 16897305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of mechanism and relationship of GacA and RsmA, two regulators of antibiotics production in Pseudomonas sp. M18].
    Ge YH; Huang XQ; Zhang XH; Xu YQ
    Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):531-6. PubMed ID: 17037049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18.
    Ge Y; Huang X; Wang S; Zhang X; Xu Y
    FEMS Microbiol Lett; 2004 Aug; 237(1):41-7. PubMed ID: 15268936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66.
    Guo S; Wang Y; Wang W; Hu H; Zhang X
    Microb Cell Fact; 2020 May; 19(1):105. PubMed ID: 32430011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the central biosynthetic and secondary metabolic pathways of Pseudomonas aeruginosa strain PA1201 to improve phenazine-1-carboxylic acid production.
    Jin K; Zhou L; Jiang H; Sun S; Fang Y; Liu J; Zhang X; He YW
    Metab Eng; 2015 Nov; 32():30-38. PubMed ID: 26369437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic and Genomic Traits of Phytobeneficial Phenazine-Producing
    Zboralski A; Biessy A; Savoie MC; Novinscak A; Filion M
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production.
    Song C; Yue SJ; Liu WH; Zheng YF; Zhang CH; Feng TT; Hu HB; Wang W; Zhang XH
    World J Microbiol Biotechnol; 2020 Mar; 36(3):49. PubMed ID: 32157439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RpoS as an intermediate in RsmA-dependent regulation of secondary antifungal metabolites biosynthesis in Pseudomonas sp. M18.
    Ge Y; Yang S; Fang Y; Yang R; Mou D; Cui J; Wen L
    FEMS Microbiol Lett; 2007 Mar; 268(1):81-7. PubMed ID: 17263850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.