These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28975566)

  • 1. Fate of toxic metals during estuarine mixing of fresh water with saline water.
    Farajnejad H; Karbassi A; Heidari M
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27430-27435. PubMed ID: 28975566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flocculation of metals during mixing of Siyahrud River water with Caspian Sea water.
    Biati A; Karbassi AR
    Environ Monit Assess; 2012 Nov; 184(11):6903-11. PubMed ID: 22203411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Natural Flocculation in Eliminating Toxic Metals.
    Heidari M
    Arch Environ Contam Toxicol; 2019 Apr; 76(3):366-374. PubMed ID: 30671628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the estuarine zone on the river particulate toxicity.
    Marefat A; Karbassi A; Nasrabadi T
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):5038-5053. PubMed ID: 30607857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flocculation of dissolved Pb, Cu, Zn and Mn during estuarine mixing of river water with the Caspian Sea.
    Karbassi AR; Nadjafpour S
    Environ Pollut; 1996; 93(3):257-60. PubMed ID: 15093524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh.
    Bhuyan MS; Bakar MA
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27587-27600. PubMed ID: 28980109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of increased oxygen conditions on heavy metal flocculation in the Sefidrud estuary.
    Karbassi A; Marefat A
    Mar Pollut Bull; 2017 Aug; 121(1-2):168-175. PubMed ID: 28601438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration and fate of trace metals in Mekong River delta.
    Cenci RM; Martin JM
    Sci Total Environ; 2004 Oct; 332(1-3):167-82. PubMed ID: 15336900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle-water interactions of bismuth under simulated estuarine conditions.
    Knight LJ; Turner A
    Chemosphere; 2020 Jul; 251():126400. PubMed ID: 32171939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment.
    Sun X; Fan D; Liu M; Tian Y; Pang Y; Liao H
    Environ Pollut; 2018 Oct; 241():938-949. PubMed ID: 29929160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variation and toxicity assessment for heavy metals in sediments of intertidal zone in a typical subtropical estuary (Min River) of China.
    Sun Z; Li J; He T; Ren P; Zhu H; Gao H; Tian L; Hu X
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23080-23095. PubMed ID: 28825222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Transport and bioavailability of Cu, Pb, Zn and Ni in surface sediments of Daliao River watersystem].
    Fan YH; Lin CY; He MC; Yang ZF
    Huan Jing Ke Xue; 2008 Dec; 29(12):3469-76. PubMed ID: 19256387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size partitioning and mixing behavior of trace metals and dissolved organic matter in a South China estuary.
    Wang W; Chen M; Guo L; Wang WX
    Sci Total Environ; 2017 Dec; 603-604():434-444. PubMed ID: 28641183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of seawater mixing on the mobility of trace elements in acid phosphogypsum leachates.
    Papaslioti EM; Pérez-López R; Parviainen A; Sarmiento AM; Nieto JM; Marchesi C; Delgado-Huertas A; Garrido CJ
    Mar Pollut Bull; 2018 Feb; 127():695-703. PubMed ID: 29475713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace metals in estuaries in the Russian Far East and China: case studies from the Amur River and the Changjiang.
    Shulkin V; Zhang J
    Sci Total Environ; 2014 Nov; 499():196-211. PubMed ID: 25190045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy-metal fractionation in surface sediments of the Cauvery River Estuarine Region, Southeastern coast of India.
    Dhanakumar S; Murthy KR; Solaraj G; Mohanraj R
    Arch Environ Contam Toxicol; 2013 Jul; 65(1):14-23. PubMed ID: 23519641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodology to assess the mobility of trace elements between water and contaminated estuarine sediments as a function of the site physico-chemical characteristics.
    Fdez-Ortiz de Vallejuelo S; Gredilla A; de Diego A; Arana G; Madariaga JM
    Sci Total Environ; 2014 Mar; 473-474():359-71. PubMed ID: 24378927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater-surface water exchange associated metals at two intertidal transects, Dan'ao Estuary, Daya Bay, China.
    Li G; Li H; Wang X; Qu W; Zhang Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29663-29677. PubMed ID: 30144010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution of heavy metals in sediments from the Gulf of Paria, Trinidad.
    Norville W
    Rev Biol Trop; 2005 May; 53 Suppl 1():33-40. PubMed ID: 17465142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking environmental heavy metal concentrations and salinity gradients with metal accumulation and their effects: A case study in 3 mussel species of Vitória estuary and Espírito Santo bay, Southeast Brazil.
    Kumar V; Sinha AK; Rodrigues PP; Mubiana VK; Blust R; De Boeck G
    Sci Total Environ; 2015 Aug; 523():1-15. PubMed ID: 25847311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.