These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28975645)

  • 1. Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation.
    Aghilinejad A; Aghaamoo M; Chen X; Xu J
    Electrophoresis; 2018 Mar; 39(5-6):869-877. PubMed ID: 28975645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
    Kale A; Song L; Lu X; Yu L; Hu G; Xuan X
    Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of Joule heating effects in insulator-based dielectrophoresis microdevices.
    Kale A; Patel S; Hu G; Xuan X
    Electrophoresis; 2013 Mar; 34(5):674-83. PubMed ID: 23192532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems.
    Wang Q; Dingari NN; Buie CR
    Electrophoresis; 2017 Oct; 38(20):2576-2586. PubMed ID: 28763135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects.
    Xuan X
    Electrophoresis; 2022 Jan; 43(1-2):167-189. PubMed ID: 33991344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joule heating-enabled electrothermal enrichment of nanoparticles in insulator-based dielectrophoretic microdevices.
    Malekanfard A; Liu Z; Song L; Kale A; Zhang C; Yu L; Song Y; Xuan X
    Electrophoresis; 2021 Mar; 42(5):626-634. PubMed ID: 32935875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity.
    Chaurey V; Rohani A; Su YH; Liao KT; Chou CF; Swami NS
    Electrophoresis; 2013 Apr; 34(7):1097-104. PubMed ID: 23436401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joule heating effects in optimized insulator-based dielectrophoretic devices: An interplay between post geometry and temperature rise.
    Gallo-Villanueva RC; Perez-Gonzalez VH; Cardenas-Benitez B; Jind B; Martinez-Chapa SO; Lapizco-Encinas BH
    Electrophoresis; 2019 May; 40(10):1408-1416. PubMed ID: 30883810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulator-based dielectrophoresis of microorganisms: theoretical and experimental results.
    Moncada-Hernandez H; Baylon-Cardiel JL; Pérez-González VH; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2502-11. PubMed ID: 21853448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping.
    Zellner P; Shake T; Hosseini Y; Nakidde D; Riquelme MV; Sahari A; Pruden A; Behkam B; Agah M
    Electrophoresis; 2015 Jan; 36(2):277-83. PubMed ID: 25257669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of insulating posts geometry on particle manipulation in insulator based dielectrophoretic devices.
    Lalonde A; Gencoglu A; Romero-Creel MF; Koppula KS; Lapizco-Encinas BH
    J Chromatogr A; 2014 May; 1344():99-108. PubMed ID: 24767832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.
    Hawkins BG; Kirby BJ
    Electrophoresis; 2010 Nov; 31(22):3622-33. PubMed ID: 21077234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the recent developments of insulator-based dielectrophoresis: A review.
    Lapizco-Encinas BH
    Electrophoresis; 2019 Feb; 40(3):358-375. PubMed ID: 30112789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ; Green NG
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells.
    Aghaamoo M; Aghilinejad A; Chen X; Xu J
    Electrophoresis; 2019 May; 40(10):1486-1493. PubMed ID: 30740752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis.
    Bhattacharya S; Chao TC; Ariyasinghe N; Ruiz Y; Lake D; Ros R; Ros A
    Anal Bioanal Chem; 2014 Mar; 406(7):1855-65. PubMed ID: 24408303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration.
    Martínez-López JI; Moncada-Hernández H; Baylon-Cardiel JL; Martínez-Chapa SO; Rito-Palomares M; Lapizco-Encinas BH
    Anal Bioanal Chem; 2009 May; 394(1):293-302. PubMed ID: 19190896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.