These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28975657)

  • 1. Functional properties of chondrocytes and articular cartilage using optical imaging to scanning probe microscopy.
    Xia Y; Darling EM; Herzog W
    J Orthop Res; 2018 Feb; 36(2):620-631. PubMed ID: 28975657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics.
    Khoshgoftar M; Torzilli PA; Maher SA
    J Orthop Res; 2018 Feb; 36(2):721-729. PubMed ID: 29044742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducing the Biomechanical Environment of the Chondrocyte for Cartilage Tissue Engineering.
    Statham P; Jones E; Jennings LM; Fermor HL
    Tissue Eng Part B Rev; 2022 Apr; 28(2):405-420. PubMed ID: 33726527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization.
    Guilak F; Alexopoulos LG; Haider MA; Ting-Beall HP; Setton LA
    Ann Biomed Eng; 2005 Oct; 33(10):1312-8. PubMed ID: 16240080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The deformation behavior and mechanical properties of chondrocytes in articular cartilage.
    Guilak F; Jones WR; Ting-Beall HP; Lee GM
    Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer.
    Vincent TL; McLean CJ; Full LE; Peston D; Saklatvala J
    Osteoarthritis Cartilage; 2007 Jul; 15(7):752-63. PubMed ID: 17368052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage.
    Guilak F
    Biorheology; 2000; 37(1-2):27-44. PubMed ID: 10912176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium signaling of in situ chondrocytes in articular cartilage under compressive loading: Roles of calcium sources and cell membrane ion channels.
    Lv M; Zhou Y; Chen X; Han L; Wang L; Lu XL
    J Orthop Res; 2018 Feb; 36(2):730-738. PubMed ID: 28980722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of cell mechanics for cartilage tissue engineering.
    Shieh AC; Athanasiou KA
    Ann Biomed Eng; 2003 Jan; 31(1):1-11. PubMed ID: 12572651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chondrocyte primary cilium.
    Ruhlen R; Marberry K
    Osteoarthritis Cartilage; 2014 Aug; 22(8):1071-6. PubMed ID: 24879961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biphasic multiscale study of the mechanical microenvironment of chondrocytes within articular cartilage under unconfined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2014 Aug; 47(11):2721-9. PubMed ID: 24882738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Articular cartilage: tissue design and chondrocyte-matrix interactions.
    Buckwalter JA; Mankin HJ
    Instr Course Lect; 1998; 47():477-86. PubMed ID: 9571449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical properties and mechanobiology of the articular chondrocyte.
    Chen C; Tambe DT; Deng L; Yang L
    Am J Physiol Cell Physiol; 2013 Dec; 305(12):C1202-8. PubMed ID: 24067919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering.
    van der Kraan PM; Buma P; van Kuppevelt T; van den Berg WB
    Osteoarthritis Cartilage; 2002 Aug; 10(8):631-7. PubMed ID: 12479385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tachykinin expression in cartilage and function in human articular chondrocyte mechanotransduction.
    Millward-Sadler SJ; Mackenzie A; Wright MO; Lee HS; Elliot K; Gerrard L; Fiskerstrand CE; Salter DM; Quinn JP
    Arthritis Rheum; 2003 Jan; 48(1):146-56. PubMed ID: 12528114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.