These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28975670)

  • 21. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.
    Zhang C; Mortuza SM; He B; Wang Y; Zhang Y
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):136-151. PubMed ID: 29082551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of protein assembly prediction in CASP12.
    Lafita A; Bliven S; Kryshtafovych A; Bertoni M; Monastyrskyy B; Duarte JM; Schwede T; Capitani G
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):247-256. PubMed ID: 29071742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Critical assessment of methods of protein structure prediction (CASP)--round x.
    Moult J; Fidelis K; Kryshtafovych A; Schwede T; Tramontano A
    Proteins; 2014 Feb; 82 Suppl 2(0 2):1-6. PubMed ID: 24344053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can molecular dynamics simulations provide high-resolution refinement of protein structure?
    Chen J; Brooks CL
    Proteins; 2007 Jun; 67(4):922-30. PubMed ID: 17373704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods.
    Abriata LA; Tamò GE; Monastyrskyy B; Kryshtafovych A; Dal Peraro M
    Proteins; 2018 Mar; 86 Suppl 1():97-112. PubMed ID: 29139163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Princeton_TIGRESS: protein geometry refinement using simulations and support vector machines.
    Khoury GA; Tamamis P; Pinnaduwage N; Smadbeck J; Kieslich CA; Floudas CA
    Proteins; 2014 May; 82(5):794-814. PubMed ID: 24174311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consistent refinement of submitted models at CASP using a knowledge-based potential.
    Chopra G; Kalisman N; Levitt M
    Proteins; 2010 Sep; 78(12):2668-78. PubMed ID: 20589633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial unfolding and refolding for structure refinement: A unified approach of geometric simulations and molecular dynamics.
    Kumar A; Campitelli P; Thorpe MF; Ozkan SB
    Proteins; 2015 Dec; 83(12):2279-92. PubMed ID: 26476100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Simple and Efficient Protein Structure Refinement Method.
    Cheng Q; Joung I; Lee J
    J Chem Theory Comput; 2017 Oct; 13(10):5146-5162. PubMed ID: 28800396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Significant Refinement of Protein Structure Models Using a Residue-Specific Force Field.
    Xun S; Jiang F; Wu YD
    J Chem Theory Comput; 2015 Apr; 11(4):1949-56. PubMed ID: 26574396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of protein structure with the coarse-grained UNRES force field assisted by small X-ray scattering data and knowledge-based information.
    Karczyńska AS; Mozolewska MA; Krupa P; Giełdoń A; Liwo A; Czaplewski C
    Proteins; 2018 Mar; 86 Suppl 1():228-239. PubMed ID: 29134679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein structure refinement with adaptively restrained homologous replicas.
    Della Corte D; Wildberg A; Schröder GF
    Proteins; 2016 Sep; 84 Suppl 1():302-13. PubMed ID: 26441154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy.
    Ogorzalek TL; Hura GL; Belsom A; Burnett KH; Kryshtafovych A; Tainer JA; Rappsilber J; Tsutakawa SE; Fidelis K
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):202-214. PubMed ID: 29314274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CASP11 refinement experiments with ROSETTA.
    Park H; DiMaio F; Baker D
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):314-22. PubMed ID: 26205421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the template-based modeling in CASP12.
    Kryshtafovych A; Monastyrskyy B; Fidelis K; Moult J; Schwede T; Tramontano A
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):321-334. PubMed ID: 29159950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of model refinement in CASP13.
    Read RJ; Sammito MD; Kryshtafovych A; Croll TI
    Proteins; 2019 Dec; 87(12):1249-1262. PubMed ID: 31365160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling.
    Zhang J; Liang Y; Zhang Y
    Structure; 2011 Dec; 19(12):1784-95. PubMed ID: 22153501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved cryoEM-Guided Iterative Molecular Dynamics--Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction.
    Lindert S; McCammon JA
    J Chem Theory Comput; 2015 Mar; 11(3):1337-46. PubMed ID: 25883538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. refineD: improved protein structure refinement using machine learning based restrained relaxation.
    Bhattacharya D
    Bioinformatics; 2019 Sep; 35(18):3320-3328. PubMed ID: 30759180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016).
    Kryshtafovych A; Albrecht R; Baslé A; Bule P; Caputo AT; Carvalho AL; Chao KL; Diskin R; Fidelis K; Fontes CMGA; Fredslund F; Gilbert HJ; Goulding CW; Hartmann MD; Hayes CS; Herzberg O; Hill JC; Joachimiak A; Kohring GW; Koning RI; Lo Leggio L; Mangiagalli M; Michalska K; Moult J; Najmudin S; Nardini M; Nardone V; Ndeh D; Nguyen TH; Pintacuda G; Postel S; van Raaij MJ; Roversi P; Shimon A; Singh AK; Sundberg EJ; Tars K; Zitzmann N; Schwede T
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):27-50. PubMed ID: 28960539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.