These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28975788)

  • 61. Electrocatalytic O₂ reduction by [Fe-Fe]-hydrogenase active site models.
    Dey S; Rana A; Crouthers D; Mondal B; Das PK; Darensbourg MY; Dey A
    J Am Chem Soc; 2014 Jun; 136(25):8847-50. PubMed ID: 24846692
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Intercluster Redox Coupling Influences Protonation at the H-cluster in [FeFe] Hydrogenases.
    Rodríguez-Maciá P; Pawlak K; Rüdiger O; Reijerse EJ; Lubitz W; Birrell JA
    J Am Chem Soc; 2017 Oct; 139(42):15122-15134. PubMed ID: 28910086
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An oxidized active site model for the FeFe hydrogenase: reduction with hydrogen gas.
    Matthews SL; Heinekey DM
    Inorg Chem; 2011 Sep; 50(17):7925-7. PubMed ID: 21793493
    [TBL] [Abstract][Full Text] [Related]  

  • 64. DFT dissection of the reduction step in H2 catalytic production by [FeFe]-hydrogenase-inspired models: can the bridging hydride become more reactive than the terminal isomer?
    Filippi G; Arrigoni F; Bertini L; De Gioia L; Zampella G
    Inorg Chem; 2015 Oct; 54(19):9529-42. PubMed ID: 26359661
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Atypical effect of temperature tuning on the insertion of the catalytic iron-sulfur center in a recombinant [FeFe]-hydrogenase.
    Morra S; Cordara A; Gilardi G; Valetti F
    Protein Sci; 2015 Dec; 24(12):2090-4. PubMed ID: 26362685
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Reconstitution of [Fe]-hydrogenase using model complexes.
    Shima S; Chen D; Xu T; Wodrich MD; Fujishiro T; Schultz KM; Kahnt J; Ataka K; Hu X
    Nat Chem; 2015 Dec; 7(12):995-1002. PubMed ID: 26587715
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [FeFe]-hydrogenase maturation.
    Shepard EM; Mus F; Betz JN; Byer AS; Duffus BR; Peters JW; Broderick JB
    Biochemistry; 2014 Jul; 53(25):4090-104. PubMed ID: 24878200
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
    Peters JW; Schut GJ; Boyd ES; Mulder DW; Shepard EM; Broderick JB; King PW; Adams MW
    Biochim Biophys Acta; 2015 Jun; 1853(6):1350-69. PubMed ID: 25461840
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Isocyanide in biochemistry? A theoretical investigation of the electronic effects and energetics of cyanide ligand protonation in [FeFe]-hydrogenases.
    Greco C; Bruschi M; Fantucci P; Ryde U; De Gioia L
    Chemistry; 2011 Feb; 17(6):1954-65. PubMed ID: 21274947
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Redox Active [2Fe-2S] Cluster on the Hydrogenase Maturase HydF.
    Shepard EM; Byer AS; Betz JN; Peters JW; Broderick JB
    Biochemistry; 2016 Jun; 55(25):3514-27. PubMed ID: 27232385
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 electrode.
    Morra S; Valetti F; Sadeghi SJ; King PW; Meyer T; Gilardi G
    Chem Commun (Camb); 2011 Oct; 47(38):10566-8. PubMed ID: 21863186
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hydrogen production. Green algae as a source of energy.
    Melis A; Happe T
    Plant Physiol; 2001 Nov; 127(3):740-8. PubMed ID: 11706159
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production.
    Lubner CE; Knörzer P; Silva PJ; Vincent KA; Happe T; Bryant DA; Golbeck JH
    Biochemistry; 2010 Dec; 49(48):10264-6. PubMed ID: 21058656
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects.
    Khanna N; Lindblad P
    Int J Mol Sci; 2015 May; 16(5):10537-61. PubMed ID: 26006225
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms.
    Ghirardi ML; Posewitz MC; Maness PC; Dubini A; Yu J; Seibert M
    Annu Rev Plant Biol; 2007; 58():71-91. PubMed ID: 17150028
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Characterization of the oxygen tolerance of a hydrogenase linked to a carbon monoxide oxidation pathway in Rubrivivax gelatinosus.
    Maness PC; Smolinski S; Dillon AC; Heben MJ; Weaver PF
    Appl Environ Microbiol; 2002 Jun; 68(6):2633-6. PubMed ID: 12039713
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Aerobic damage to [FeFe]-hydrogenases: activation barriers for the chemical attachment of O2.
    Kubas A; De Sancho D; Best RB; Blumberger J
    Angew Chem Int Ed Engl; 2014 Apr; 53(16):4081-4. PubMed ID: 24615978
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrochemical Investigations on the Inactivation of the [FeFe] Hydrogenase from Desulfovibrio desulfuricans by O
    Rodríguez-Maciá P; Birrell JA; Lubitz W; Rüdiger O
    Chempluschem; 2017 Apr; 82(4):540-545. PubMed ID: 31961578
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism.
    Barstow B; Agapakis CM; Boyle PM; Grandl G; Silver PA; Wintermute EH
    J Biol Eng; 2011 May; 5():7. PubMed ID: 21615937
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Investigation of the Unusual Ability of the [FeFe] Hydrogenase from
    Corrigan PS; Tirsch JL; Silakov A
    J Am Chem Soc; 2020 Jul; 142(28):12409-12419. PubMed ID: 32580545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.