These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 28976219)

  • 41. Conformational dynamics and ensembles in protein folding.
    Muñoz V
    Annu Rev Biophys Biomol Struct; 2007; 36():395-412. PubMed ID: 17291180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contact order and ab initio protein structure prediction.
    Bonneau R; Ruczinski I; Tsai J; Baker D
    Protein Sci; 2002 Aug; 11(8):1937-44. PubMed ID: 12142448
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intermediates in the folding equilibrium of repeat proteins from the TPR family.
    González-Charro V; Rey A
    Eur Biophys J; 2014 Sep; 43(8-9):433-43. PubMed ID: 25048829
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An alternative approach to protein folding.
    Kang Y; Fortmann CM
    Biomed Res Int; 2013; 2013():583045. PubMed ID: 24078920
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Complete Coupled Binding-Folding Pathway of the Intrinsically Disordered Transcription Factor Protein Brinker Revealed by Molecular Dynamics Simulations and Markov State Modeling.
    Collins AP; Anderson PC
    Biochemistry; 2018 Jul; 57(30):4404-4420. PubMed ID: 29990433
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient traversal of beta-sheet protein folding pathways using ensemble models.
    Shenker S; O'Donnell CW; Devadas S; Berger B; Waldispühl J
    J Comput Biol; 2011 Nov; 18(11):1635-47. PubMed ID: 21958108
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reducing the dimensionality of the protein-folding search problem.
    Chellapa GD; Rose GD
    Protein Sci; 2012 Aug; 21(8):1231-40. PubMed ID: 22692765
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models.
    Koliński A; Bujnicki JM
    Proteins; 2005; 61 Suppl 7():84-90. PubMed ID: 16187348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coarse-grained force field: general folding theory.
    Liwo A; He Y; Scheraga HA
    Phys Chem Chem Phys; 2011 Oct; 13(38):16890-901. PubMed ID: 21643583
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of protein-folding pathways by reduced-space modeling.
    Kmiecik S; Kolinski A
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12330-5. PubMed ID: 17636132
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein folding thermodynamics: a new computational approach.
    Chong SH; Ham S
    J Phys Chem B; 2014 May; 118(19):5017-25. PubMed ID: 24779395
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction of folding mechanisms for Ig-like beta sandwich proteins based on inter-residue average distance statistics methods.
    Aumpuchin P; Kikuchi T
    Proteins; 2019 Feb; 87(2):120-135. PubMed ID: 30520530
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Free-energy landscape of intrinsically disordered proteins investigated by all-atom multicanonical molecular dynamics.
    Higo J; Umezawa K
    Adv Exp Med Biol; 2014; 805():331-51. PubMed ID: 24446368
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards more accurate prediction of protein folding rates: a review of the existing Web-based bioinformatics approaches.
    Chang CC; Tey BT; Song J; Ramanan RN
    Brief Bioinform; 2015 Mar; 16(2):314-24. PubMed ID: 24621527
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new computational model for protein folding based on atomic solvation.
    Wang Y; Zhang H; Scott RA
    Protein Sci; 1995 Jul; 4(7):1402-11. PubMed ID: 7670381
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Computational Approach to Studying Protein Folding Problems Considering the Crucial Role of the Intracellular Environment.
    González-Pérez PP; Orta DJ; Peña I; Flores EC; Ramírez JU; Beltrán HI; Alas SJ
    J Comput Biol; 2017 Oct; 24(10):995-1013. PubMed ID: 28177752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effective 3D protein structure prediction with local adjustment genetic-annealing algorithm.
    Zhang XL; Lin XL
    Interdiscip Sci; 2010 Sep; 2(3):256-62. PubMed ID: 20658338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Successes and challenges in simulating the folding of large proteins.
    Gershenson A; Gosavi S; Faccioli P; Wintrode PL
    J Biol Chem; 2020 Jan; 295(1):15-33. PubMed ID: 31712314
    [TBL] [Abstract][Full Text] [Related]  

  • 59. APL: An angle probability list to improve knowledge-based metaheuristics for the three-dimensional protein structure prediction.
    Borguesan B; Barbachan e Silva M; Grisci B; Inostroza-Ponta M; Dorn M
    Comput Biol Chem; 2015 Dec; 59 Pt A():142-57. PubMed ID: 26495908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Refined Parameterization of Nonbonded Interactions Improves Conformational Sampling and Kinetics of Protein Folding Simulations.
    Yoo J; Aksimentiev A
    J Phys Chem Lett; 2016 Oct; 7(19):3812-3818. PubMed ID: 27617340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.