These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28976643)

  • 1. Characterization and application of porous gold nanoparticles as 2-photon luminescence imaging agents: 20-fold brighter than gold nanorods.
    Park JH; Park J; Kim S; Kim SH; Lee TG; Lee JY; Wi JS
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28976643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Enhancement of Two-Photon Excited Luminescence of Gold Nanoclusters.
    Pniakowska A; Olesiak-Banska J
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy.
    Chen NT; Tang KC; Chung MF; Cheng SH; Huang CM; Chu CH; Chou PT; Souris JS; Chen CT; Mou CY; Lo LW
    Theranostics; 2014; 4(8):798-807. PubMed ID: 24955141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon effects on two photon luminescence of gold nanorods.
    Wang DS; Hsu FY; Lin CW
    Opt Express; 2009 Jul; 17(14):11350-9. PubMed ID: 19582049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanocages as contrast agents for two-photon luminescence endomicroscopy imaging.
    Chen Y; Zhang Y; Liang W; Li X
    Nanomedicine; 2012 Nov; 8(8):1267-70. PubMed ID: 22841912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical detection of gold nanoparticles in a prostate-shaped porcine phantom.
    Grabtchak S; Tonkopi E; Whelan WM
    J Biomed Opt; 2013 Jul; 18(7):077005. PubMed ID: 23864016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization.
    Zhao T; Wu H; Yao SQ; Xu QH; Xu GQ
    Langmuir; 2010 Sep; 26(18):14937-42. PubMed ID: 20726559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging.
    Wang S; Xi W; Cai F; Zhao X; Xu Z; Qian J; He S
    Theranostics; 2015; 5(3):251-66. PubMed ID: 25553113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells.
    Li JL; Gu M
    Biomaterials; 2010 Dec; 31(36):9492-8. PubMed ID: 20932571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods.
    Durr NJ; Larson T; Smith DK; Korgel BA; Sokolov K; Ben-Yakar A
    Nano Lett; 2007 Apr; 7(4):941-5. PubMed ID: 17335272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells.
    Zhu J; Yong KT; Roy I; Hu R; Ding H; Zhao L; Swihart MT; He GS; Cui Y; Prasad PN
    Nanotechnology; 2010 Jul; 21(28):285106. PubMed ID: 20585168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects.
    Tong L; Wei Q; Wei A; Cheng JX
    Photochem Photobiol; 2009; 85(1):21-32. PubMed ID: 19161395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics.
    Pang B; Yang X; Xia Y
    Nanomedicine (Lond); 2016 Jul; 11(13):1715-28. PubMed ID: 27348546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced dual contrast agent, Co(2+)-doped NaYF4:Yb(3+),Tm(3+) nanorods, for near infrared-to-near infrared upconversion luminescence and magnetic resonance imaging.
    Xia A; Zhang X; Zhang J; Deng Y; Chen Q; Wu S; Huang X; Shen J
    Biomaterials; 2014 Nov; 35(33):9167-76. PubMed ID: 25108318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Monitoring of the Intracellular Stability of Nanoparticles by Using Fluorescence Lifetime Imaging.
    Shang L; Yang L; Wang H; Nienhaus GU
    Small; 2016 Feb; 12(7):868-73. PubMed ID: 26708212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging.
    Polavarapu L; Manna M; Xu QH
    Nanoscale; 2011 Feb; 3(2):429-34. PubMed ID: 20944843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold Nanocluster Embedded Albumin Nanoparticles for Two-Photon Imaging of Cancer Cells Accompanying Drug Delivery.
    Khandelia R; Bhandari S; Pan UN; Ghosh SS; Chattopadhyay A
    Small; 2015 Sep; 11(33):4075-81. PubMed ID: 25939342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation.
    Jin X; Li H; Wang S; Kong N; Xu H; Fu Q; Gu H; Ye J
    Nanoscale; 2014 Nov; 6(23):14360-70. PubMed ID: 25329447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance.
    Zhang T; Cui H; Fang CY; Su LJ; Ren S; Chang HC; Yang X; Forrest ML
    J Biomed Opt; 2013 Feb; 18(2):26018. PubMed ID: 23400417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.