These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 28977475)
21. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. Cadet J; Wagner JR Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206 [TBL] [Abstract][Full Text] [Related]
22. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase. Coey CT; Drohat AC Nucleic Acids Res; 2018 Jun; 46(10):5159-5170. PubMed ID: 29660017 [TBL] [Abstract][Full Text] [Related]
23. Epigenetic Modifications of Cytosine: Biophysical Properties, Regulation, and Function in Mammalian DNA. Hardwick JS; Lane AN; Brown T Bioessays; 2018 Mar; 40(3):. PubMed ID: 29369386 [TBL] [Abstract][Full Text] [Related]
24. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Wang L; Zhou Y; Xu L; Xiao R; Lu X; Chen L; Chong J; Li H; He C; Fu XD; Wang D Nature; 2015 Jul; 523(7562):621-5. PubMed ID: 26123024 [TBL] [Abstract][Full Text] [Related]
25. Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Ngo TT; Yoo J; Dai Q; Zhang Q; He C; Aksimentiev A; Ha T Nat Commun; 2016 Feb; 7():10813. PubMed ID: 26905257 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of (R)-Configured 2'-Fluorinated mC, hmC, fC, and caC Phosphoramidites and Oligonucleotides. Schröder AS; Kotljarova O; Parsa E; Iwan K; Raddaoui N; Carell T Org Lett; 2016 Sep; 18(17):4368-71. PubMed ID: 27541290 [TBL] [Abstract][Full Text] [Related]
27. Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation. Ji D; Lin K; Song J; Wang Y Mol Biosyst; 2014 Jul; 10(7):1749-52. PubMed ID: 24789765 [TBL] [Abstract][Full Text] [Related]
28. New themes in the biological functions of 5-methylcytosine and 5-hydroxymethylcytosine. Moen EL; Mariani CJ; Zullow H; Jeff-Eke M; Litwin E; Nikitas JN; Godley LA Immunol Rev; 2015 Jan; 263(1):36-49. PubMed ID: 25510270 [TBL] [Abstract][Full Text] [Related]
29. High sensitivity 5-hydroxymethylcytosine detection in Balb/C brain tissue. Davis T; Vaisvila R J Vis Exp; 2011 Feb; (48):. PubMed ID: 21307836 [TBL] [Abstract][Full Text] [Related]
30. Tet2 Catalyzes Stepwise 5-Methylcytosine Oxidation by an Iterative and de novo Mechanism. Crawford DJ; Liu MY; Nabel CS; Cao XJ; Garcia BA; Kohli RM J Am Chem Soc; 2016 Jan; 138(3):730-3. PubMed ID: 26734843 [TBL] [Abstract][Full Text] [Related]
31. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Arab K; Park YJ; Lindroth AM; Schäfer A; Oakes C; Weichenhan D; Lukanova A; Lundin E; Risch A; Meister M; Dienemann H; Dyckhoff G; Herold-Mende C; Grummt I; Niehrs C; Plass C Mol Cell; 2014 Aug; 55(4):604-14. PubMed ID: 25087872 [TBL] [Abstract][Full Text] [Related]
32. CpG site-specific alteration of hydroxymethylcytosine to methylcytosine beyond DNA replication. Kubosaki A; Tomaru Y; Furuhata E; Suzuki T; Shin JW; Simon C; Ando Y; Hasegawa R; Hayashizaki Y; Suzuki H Biochem Biophys Res Commun; 2012 Sep; 426(1):141-7. PubMed ID: 22925887 [TBL] [Abstract][Full Text] [Related]
33. Sensitive and simultaneous determination of 5-methylcytosine and its oxidation products in genomic DNA by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry analysis. Tang Y; Zheng SJ; Qi CB; Feng YQ; Yuan BF Anal Chem; 2015 Mar; 87(6):3445-52. PubMed ID: 25675106 [TBL] [Abstract][Full Text] [Related]
34. CpG dinucleotide methylation of the CYP19 I.3/II promoter modulates cAMP-stimulated aromatase activity. Demura M; Bulun SE Mol Cell Endocrinol; 2008 Feb; 283(1-2):127-32. PubMed ID: 18201819 [TBL] [Abstract][Full Text] [Related]
35. Evolution of motif variants and positional bias of the cyclic-AMP response element. Smith B; Fang H; Pan Y; Walker PR; Famili AF; Sikorska M BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S15. PubMed ID: 17288573 [TBL] [Abstract][Full Text] [Related]
36. 5-methylcytosine and its derivatives. Yuan BF Adv Clin Chem; 2014; 67():151-87. PubMed ID: 25735861 [TBL] [Abstract][Full Text] [Related]
37. Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA. Modrzejewska M; Gawronski M; Skonieczna M; Zarakowska E; Starczak M; Foksinski M; Rzeszowska-Wolny J; Gackowski D; Olinski R Free Radic Biol Med; 2016 Dec; 101():378-383. PubMed ID: 27833031 [TBL] [Abstract][Full Text] [Related]
38. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Weber AR; Krawczyk C; Robertson AB; Kuśnierczyk A; Vågbø CB; Schuermann D; Klungland A; Schär P Nat Commun; 2016 Mar; 7():10806. PubMed ID: 26932196 [TBL] [Abstract][Full Text] [Related]
39. Crystal structure of human methyl-binding domain IV glycosylase bound to abasic DNA. Manvilla BA; Maiti A; Begley MC; Toth EA; Drohat AC J Mol Biol; 2012 Jul; 420(3):164-75. PubMed ID: 22560993 [TBL] [Abstract][Full Text] [Related]
40. Structural basis for effects of CpA modifications on C/EBPβ binding of DNA. Yang J; Horton JR; Wang D; Ren R; Li J; Sun D; Huang Y; Zhang X; Blumenthal RM; Cheng X Nucleic Acids Res; 2019 Feb; 47(4):1774-1785. PubMed ID: 30566668 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]