These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 28977508)
1. Nucleic acid binding proteins affect the subcellular distribution of phosphorothioate antisense oligonucleotides. Bailey JK; Shen W; Liang XH; Crooke ST Nucleic Acids Res; 2017 Oct; 45(18):10649-10671. PubMed ID: 28977508 [TBL] [Abstract][Full Text] [Related]
2. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity. Liang XH; Shen W; Sun H; Kinberger GA; Prakash TP; Nichols JG; Crooke ST Nucleic Acids Res; 2016 May; 44(8):3892-907. PubMed ID: 26945041 [TBL] [Abstract][Full Text] [Related]
3. Binding of phosphorothioate oligonucleotides with RNase H1 can cause conformational changes in the protein and alter the interactions of RNase H1 with other proteins. Zhang L; Vickers TA; Sun H; Liang XH; Crooke ST Nucleic Acids Res; 2021 Mar; 49(5):2721-2739. PubMed ID: 33577678 [TBL] [Abstract][Full Text] [Related]
4. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation. Takanashi K; Yamaguchi A Biochem Biophys Res Commun; 2014 Sep; 452(3):600-7. PubMed ID: 25173930 [TBL] [Abstract][Full Text] [Related]
5. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Shen W; De Hoyos CL; Sun H; Vickers TA; Liang XH; Crooke ST Nucleic Acids Res; 2018 Mar; 46(5):2204-2217. PubMed ID: 29390093 [TBL] [Abstract][Full Text] [Related]
6. TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells. Liang XH; Shen W; Sun H; Prakash TP; Crooke ST Nucleic Acids Res; 2014 Jul; 42(12):7819-32. PubMed ID: 24861627 [TBL] [Abstract][Full Text] [Related]
7. 2'-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Shen W; Liang XH; Sun H; Crooke ST Nucleic Acids Res; 2015 May; 43(9):4569-78. PubMed ID: 25855809 [TBL] [Abstract][Full Text] [Related]
8. In vitro metabolism of 2'-ribose unmodified and modified phosphorothioate oligonucleotide therapeutics using liquid chromatography mass spectrometry. Kim J; El Zahar NM; Bartlett MG Biomed Chromatogr; 2020 Jul; 34(7):e4839. PubMed ID: 32246854 [TBL] [Abstract][Full Text] [Related]
9. Characterizing the effect of GalNAc and phosphorothioate backbone on binding of antisense oligonucleotides to the asialoglycoprotein receptor. Schmidt K; Prakash TP; Donner AJ; Kinberger GA; Gaus HJ; Low A; Østergaard ME; Bell M; Swayze EE; Seth PP Nucleic Acids Res; 2017 Mar; 45(5):2294-2306. PubMed ID: 28158620 [TBL] [Abstract][Full Text] [Related]
10. Intra-endosomal trafficking mediated by lysobisphosphatidic acid contributes to intracellular release of phosphorothioate-modified antisense oligonucleotides. Wang S; Sun H; Tanowitz M; Liang XH; Crooke ST Nucleic Acids Res; 2017 May; 45(9):5309-5322. PubMed ID: 28379543 [TBL] [Abstract][Full Text] [Related]
11. The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS. Yamaguchi A; Kitajo K PLoS One; 2012; 7(11):e49267. PubMed ID: 23152885 [TBL] [Abstract][Full Text] [Related]