These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 28977572)
1. Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs. Chawla M; Chermak E; Zhang Q; Bujnicki JM; Oliva R; Cavallo L Nucleic Acids Res; 2017 Nov; 45(19):11019-11032. PubMed ID: 28977572 [TBL] [Abstract][Full Text] [Related]
2. Occurrence and stability of lone pair-π and OH-π interactions between water and nucleobases in functional RNAs. Kalra K; Gorle S; Cavallo L; Oliva R; Chawla M Nucleic Acids Res; 2020 Jun; 48(11):5825-5838. PubMed ID: 32392301 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of occurrence of different types of protonated base pairs in RNA: a quantum chemical study. Halder A; Halder S; Bhattacharyya D; Mitra A Phys Chem Chem Phys; 2014 Sep; 16(34):18383-96. PubMed ID: 25070186 [TBL] [Abstract][Full Text] [Related]
4. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations? Svozil D; Hobza P; Sponer J J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584 [TBL] [Abstract][Full Text] [Related]
5. Oxygen-aromatic contacts in intra-strand base pairs: analysis of high-resolution DNA crystal structures and quantum chemical calculations. Jain A; Krishna Deepak RNV; Sankararamakrishnan R J Struct Biol; 2014 Jul; 187(1):49-57. PubMed ID: 24816369 [TBL] [Abstract][Full Text] [Related]
6. Lone pair-aromatic interactions: to stabilize or not to stabilize. Egli M; Sarkhel S Acc Chem Res; 2007 Mar; 40(3):197-205. PubMed ID: 17370991 [TBL] [Abstract][Full Text] [Related]
7. 'Z-DNA like' fragments in RNA: a recurring structural motif with implications for folding, RNA/protein recognition and immune response. D'Ascenzo L; Leonarski F; Vicens Q; Auffinger P Nucleic Acids Res; 2016 Jul; 44(12):5944-56. PubMed ID: 27151194 [TBL] [Abstract][Full Text] [Related]
8. Cross-modulation of the pKa of nucleobases in a single-stranded hexameric-RNA due to tandem electrostatic nearest-neighbor interactions. Acharya P; Acharya S; Cheruku P; Amirkhanov NV; Földesi A; Chattopadhyaya J J Am Chem Soc; 2003 Aug; 125(33):9948-61. PubMed ID: 12914458 [TBL] [Abstract][Full Text] [Related]
9. Base-intercalated and base-wedged stacking elements in 3D-structure of RNA and RNA-protein complexes. Baulin E; Metelev V; Bogdanov A Nucleic Acids Res; 2020 Sep; 48(15):8675-8685. PubMed ID: 32687167 [TBL] [Abstract][Full Text] [Related]
10. Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose···Nucleobase Lone-Pair···π Contacts in Nucleic Acids. Mráziková K; Šponer J; Mlýnský V; Auffinger P; Kruse H J Chem Inf Model; 2021 Nov; 61(11):5644-5657. PubMed ID: 34738826 [TBL] [Abstract][Full Text] [Related]
11. Investigating the Effect of Chemical Modifications on the Ribose Sugar Conformation, Watson-Crick Base Pairing, and Intrastrand Stacking Interactions: A Theoretical Approach. Das G; Harikrishna S; Gore KR J Phys Chem B; 2024 Sep; 128(35):8313-8331. PubMed ID: 39172066 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs. Burkard ME; Kierzek R; Turner DH J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596 [TBL] [Abstract][Full Text] [Related]
13. Characterization of nucleobase-amino acid stacking interactions utilized by a DNA repair enzyme. Rutledge LR; Campbell-Verduyn LS; Hunter KC; Wetmore SD J Phys Chem B; 2006 Oct; 110(39):19652-63. PubMed ID: 17004834 [TBL] [Abstract][Full Text] [Related]
14. The aromatic stacking interactions between proteins and their macromolecular ligands. Rahman MM; Muhseen ZT; Junaid M; Zhang H Curr Protein Pept Sci; 2015; 16(6):502-12. PubMed ID: 26138814 [TBL] [Abstract][Full Text] [Related]
15. Anatomy of noncovalent interactions between the nucleobases or ribose and π-containing amino acids in RNA-protein complexes. Wilson KA; Kung RW; D'souza S; Wetmore SD Nucleic Acids Res; 2021 Feb; 49(4):2213-2225. PubMed ID: 33544852 [TBL] [Abstract][Full Text] [Related]
16. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations. Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254 [TBL] [Abstract][Full Text] [Related]
17. Water-nucleobase "stacking": H-pi and lone pair-pi interactions in the atomic resolution crystal structure of an RNA pseudoknot. Sarkhel S; Rich A; Egli M J Am Chem Soc; 2003 Jul; 125(30):8998-9. PubMed ID: 15369340 [TBL] [Abstract][Full Text] [Related]
18. The crystal structure of the octamer [r(guauaca)dC]2 with six Watson-Crick base-pairs and two 3' overhang residues. Shi K; Biswas R; Mitra SN; Sundaralingam M J Mol Biol; 2000 May; 299(1):113-22. PubMed ID: 10860726 [TBL] [Abstract][Full Text] [Related]
19. Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study. Sponer J; Gabb HA; Leszczynski J; Hobza P Biophys J; 1997 Jul; 73(1):76-87. PubMed ID: 9199773 [TBL] [Abstract][Full Text] [Related]
20. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Butcher SE; Pyle AM Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]