These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28977578)

  • 1. Marrow fat may distribute the energy of impact loading throughout subchondral bone.
    Simkin PA
    Rheumatology (Oxford); 2018 Mar; 57(3):414-418. PubMed ID: 28977578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The micromechanics of the superficial zone of articular cartilage.
    Mansfield JC; Bell JS; Winlove CP
    Osteoarthritis Cartilage; 2015 Oct; 23(10):1806-16. PubMed ID: 26050867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction in tensile strength of cartilage precedes surface damage under repeated compressive loading in vitro.
    McCormack T; Mansour JM
    J Biomech; 1998 Jan; 31(1):55-61. PubMed ID: 9596538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical damping approach for assessing the role of marrow fat on the mechanical strength of trabecular bone.
    Braidotti P; Stagni L
    Med Hypotheses; 2007; 69(1):43-6. PubMed ID: 17287095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shock absorbing ability in healthy and damaged cartilage-bone under high-rate compression.
    Shaktivesh ; Malekipour F; Lee PVS
    J Mech Behav Biomed Mater; 2019 Feb; 90():388-394. PubMed ID: 30445365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A method for determining the biomechanical properties of trabecular and spongiosa bone tissue].
    Samelin N; Köller W; Ascherl R; Gradinger R
    Biomed Tech (Berl); 1996; 41(7-8):203-8. PubMed ID: 8963021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subchondral pressures and perfusion during weight bearing.
    Beverly M; Marks BE; Murray DW
    J Orthop Surg Res; 2020 Jun; 15(1):239. PubMed ID: 32600340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of solid and fluid constitutive models of bone marrow during trabecular bone compression.
    Metzger TA; Niebur GL
    J Biomech; 2016 Oct; 49(14):3596-3601. PubMed ID: 27660172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between 3D microstructural and 2D histomorphometric properties of subchondral bone with healthy and degenerative cartilage of the knee joint.
    Lahm A; Kasch R; Spank H; Erggelet C; Esser J; Merk H; Mrosek E
    Histol Histopathol; 2014 Nov; 29(11):1477-88. PubMed ID: 24828695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bovine Osteochondral Tissues: A Questionable Model to Evaluate Mechanical Loading In Vitro.
    Tekari A; Luginbuehl R; Hofstetter W; Egli RJ
    IEEE Trans Nanobioscience; 2015 Oct; 14(7):716-21. PubMed ID: 26415204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone.
    van der Harst MR; Brama PA; van de Lest CH; Kiers GH; DeGroot J; van Weeren PR
    Osteoarthritis Cartilage; 2004 Sep; 12(9):752-61. PubMed ID: 15325642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progressive cell-mediated changes in articular cartilage and bone in mice are initiated by a single session of controlled cyclic compressive loading.
    Ko FC; Dragomir CL; Plumb DA; Hsia AW; Adebayo OO; Goldring SR; Wright TM; Goldring MB; van der Meulen MC
    J Orthop Res; 2016 Nov; 34(11):1941-1949. PubMed ID: 26896841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmission of rapidly applied loads through articular cartilage. Part 1: Uncracked cartilage.
    Kelly PA; O'Connor JJ
    Proc Inst Mech Eng H; 1996; 210(1):27-37. PubMed ID: 8663890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biomechanics of cartilage load-carriage.
    Oloyede A; Broom N
    Connect Tissue Res; 1996; 34(2):119-43. PubMed ID: 8909876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmission of rapidly applied loads through articular cartilage. Part 2: Cracked cartilage.
    Kelly PA; O'Connor JJ
    Proc Inst Mech Eng H; 1996; 210(1):39-49. PubMed ID: 8663892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock absorbing ability of articular cartilage and subchondral bone under impact compression.
    Malekipour F; Whitton C; Oetomo D; Lee PV
    J Mech Behav Biomed Mater; 2013 Oct; 26():127-35. PubMed ID: 23746699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid-structure interaction (FSI) modeling of bone marrow through trabecular bone structure under compression.
    Rabiatul AAR; Fatihhi SJ; Md Saad AP; Zakaria Z; Harun MN; Kadir MRA; Öchsner A; Zaman TK; Syahrom A
    Biomech Model Mechanobiol; 2021 Jun; 20(3):957-968. PubMed ID: 33547975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical environment of chondrocytes in articular cartilage.
    Adams MA
    Biorheology; 2006; 43(3,4):537-45. PubMed ID: 16912425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.