BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28977645)

  • 1. Short inverted repeats contribute to localized mutability in human somatic cells.
    Zou X; Morganella S; Glodzik D; Davies H; Li Y; Stratton MR; Nik-Zainal S
    Nucleic Acids Res; 2017 Nov; 45(19):11213-11221. PubMed ID: 28977645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragile DNA motifs trigger mutagenesis at distant chromosomal loci in saccharomyces cerevisiae.
    Saini N; Zhang Y; Nishida Y; Sheng Z; Choudhury S; Mieczkowski P; Lobachev KS
    PLoS Genet; 2013 Jun; 9(6):e1003551. PubMed ID: 23785298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Distribution of potentially hairpin-loop structures in the genome of bovine retroviruses].
    Limanskaia OIu; Limanskiĭ AP
    Vopr Virusol; 2009; 54(4):27-32. PubMed ID: 19708552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids.
    Bowater RP; Bohálová N; Brázda V
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
    Avila-Figueroa A; Cattie D; Delaney S
    Biochem Biophys Res Commun; 2011 Oct; 413(4):532-6. PubMed ID: 21924238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. detectIR: a novel program for detecting perfect and imperfect inverted repeats using complex numbers and vector calculation.
    Ye C; Ji G; Li L; Liang C
    PLoS One; 2014; 9(11):e113349. PubMed ID: 25409465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Within-genome evolution of REPINs: a new family of miniature mobile DNA in bacteria.
    Bertels F; Rainey PB
    PLoS Genet; 2011 Jun; 7(6):e1002132. PubMed ID: 21698139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverted repetitive sequences in the human genome.
    Dott PJ; Chuang CR; Saunders GF
    Biochemistry; 1976 Sep; 15(18):4120-5. PubMed ID: 963027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverted repeated sequences in yeast nuclear DNA.
    Klein HL; Welch SK
    Nucleic Acids Res; 1980 Oct; 8(20):4651-69. PubMed ID: 7003542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome.
    Aktaş T; Avşar Ilık İ; Maticzka D; Bhardwaj V; Pessoa Rodrigues C; Mittler G; Manke T; Backofen R; Akhtar A
    Nature; 2017 Apr; 544(7648):115-119. PubMed ID: 28355180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Counterion and polythymidine loop-length-dependent folding and thermodynamic stability of DNA hairpins reveal the unusual counterion-dependent stability of tetraloop hairpins.
    Nayak RK; Van Orden A
    J Phys Chem B; 2013 Nov; 117(45):13956-66. PubMed ID: 24144397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo SELEX of single-stranded domains in the HIV-1 leader RNA.
    van Bel N; Das AT; Berkhout B
    J Virol; 2014 Feb; 88(4):1870-80. PubMed ID: 24335293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverted repeat sequences in the Drosophila genome.
    Schmid CW; Manning JE; Davidson N
    Cell; 1975 Jun; 5(2):159-72. PubMed ID: 806348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of inverted repeated sequences in Ascaris nuclear DNA.
    Landolt P; Tobler H
    Eur J Biochem; 1986 Sep; 159(3):435-42. PubMed ID: 3019693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational dynamics in human tumors confirm the neutral intrinsic instability of the mitochondrial D-loop poly-cytidine repeat.
    Schwartz S; Alazzouzi H; Perucho M
    Genes Chromosomes Cancer; 2006 Aug; 45(8):770-80. PubMed ID: 16708351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular identification and characterization of clustered regularly interspaced short palindromic repeats (CRISPRs) in a urease-positive thermophilic Campylobacter sp. (UPTC).
    Tasaki E; Hirayama J; Tazumi A; Hayashi K; Hara Y; Ueno H; Moore JE; Millar BC; Matsuda M
    World J Microbiol Biotechnol; 2012 Feb; 28(2):713-20. PubMed ID: 22806867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to identify CRISPRs in sequencing data.
    Drevet C; Pourcel C
    Methods Mol Biol; 2012; 905():15-27. PubMed ID: 22735995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures.
    Nakagama H; Higuchi K; Tanaka E; Tsuchiya N; Nakashima K; Katahira M; Fukuda H
    Mutat Res; 2006 Jun; 598(1-2):120-31. PubMed ID: 16513142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA repeats in the human genome.
    Catasti P; Chen X; Mariappan SV; Bradbury EM; Gupta G
    Genetica; 1999; 106(1-2):15-36. PubMed ID: 10710707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA inverted repeats and human disease.
    Bissler JJ
    Front Biosci; 1998 Mar; 3():d408-18. PubMed ID: 9516381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.