These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28977712)

  • 1. Evolution of density-dependent movement during experimental range expansions.
    Fronhofer EA; Gut S; Altermatt F
    J Evol Biol; 2017 Dec; 30(12):2165-2176. PubMed ID: 28977712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection on growth rate and local adaptation drive genomic adaptation during experimental range expansions in the protist Tetrahymena thermophila.
    Moerman F; Fronhofer EA; Altermatt F; Wagner A
    J Anim Ecol; 2022 Jun; 91(6):1088-1103. PubMed ID: 34582573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-evolutionary feedbacks during experimental range expansions.
    Fronhofer EA; Altermatt F
    Nat Commun; 2015 Apr; 6():6844. PubMed ID: 25902302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperation-mediated plasticity in dispersal and colonization.
    Jacob S; Wehi P; Clobert J; Legrand D; Schtickzelle N; Huet M; Chaine A
    Evolution; 2016 Oct; 70(10):2336-2345. PubMed ID: 27480245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution under pH stress and high population densities leads to increased density-dependent fitness in the protist Tetrahymena thermophila.
    Moerman F; Arquint A; Merkli S; Wagner A; Altermatt F; Fronhofer EA
    Evolution; 2020 Mar; 74(3):573-586. PubMed ID: 31944293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersal propensity in Tetrahymena thermophila ciliates - a reaction norm perspective.
    Pennekamp F; Mitchell KA; Chaine A; Schtickzelle N
    Evolution; 2014 Aug; 68(8):2319-30. PubMed ID: 24749831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density-dependent movement and the consequences of the Allee effect in the model organism Tetrahymena.
    Fronhofer EA; Kropf T; Altermatt F
    J Anim Ecol; 2015 May; 84(3):712-722. PubMed ID: 25376344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating invasion rates result from the evolution of density-dependent dispersal.
    Travis JM; Mustin K; Benton TG; Dytham C
    J Theor Biol; 2009 Jul; 259(1):151-8. PubMed ID: 19289134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid trait evolution drives increased speed and variance in experimental range expansions.
    Weiss-Lehman C; Hufbauer RA; Melbourne BA
    Nat Commun; 2017 Jan; 8():14303. PubMed ID: 28128350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of dispersal and life history strategies--Tetrahymena ciliates.
    Fjerdingstad EJ; Schtickzelle N; Manhes P; Gutierrez A; Clobert J
    BMC Evol Biol; 2007 Aug; 7():133. PubMed ID: 17683620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid evolution of dispersal ability makes biological invasions faster and more variable.
    Ochocki BM; Miller TE
    Nat Commun; 2017 Jan; 8():14315. PubMed ID: 28128215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consumer co-evolution as an important component of the eco-evolutionary feedback.
    Hiltunen T; Becks L
    Nat Commun; 2014 Oct; 5():5226. PubMed ID: 25335515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid prey evolution can alter the structure of predator-prey communities.
    Friman VP; Jousset A; Buckling A
    J Evol Biol; 2014 Feb; 27(2):374-80. PubMed ID: 24372926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene swamping alters evolution during range expansions in the protist
    Moerman F; Fronhofer EA; Wagner A; Altermatt F
    Biol Lett; 2020 Jun; 16(6):20200244. PubMed ID: 32544380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability in Dispersal Syndromes Is a Key Driver of Metapopulation Dynamics in Experimental Microcosms.
    Jacob S; Chaine AS; Huet M; Clobert J; Legrand D
    Am Nat; 2019 Nov; 194(5):613-626. PubMed ID: 31613674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative social clusters are not destroyed by dispersal in a ciliate.
    Schtickzelle N; Fjerdingstad EJ; Chaine A; Clobert J
    BMC Evol Biol; 2009 Oct; 9():251. PubMed ID: 19828046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting evolution in experimental range expansions of an aquatic model system.
    Zilio G; Krenek S; Gougat-Barbera C; Fronhofer EA; Kaltz O
    Evol Lett; 2023 Jun; 7(3):121-131. PubMed ID: 37251588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Range expansions transition from pulled to pushed waves as growth becomes more cooperative in an experimental microbial population.
    Gandhi SR; Yurtsev EA; Korolev KS; Gore J
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6922-7. PubMed ID: 27185918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid evolution accelerates plant population spread in fragmented experimental landscapes.
    Williams JL; Kendall BE; Levine JM
    Science; 2016 Jul; 353(6298):482-5. PubMed ID: 27471303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological changes of a green alga (Micractinium sp.) involved in an early-stage of association with Tetrahymena thermophila during 5-year microcosm culture.
    Germond A; Kunihiro T; Inouhe M; Nakajima T
    Biosystems; 2013 Dec; 114(3):164-71. PubMed ID: 24035831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.