These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 28978192)
1. Update on the State of the Science for Analytical Methods for Gene-Environment Interactions. Gauderman WJ; Mukherjee B; Aschard H; Hsu L; Lewinger JP; Patel CJ; Witte JS; Amos C; Tai CG; Conti D; Torgerson DG; Lee S; Chatterjee N Am J Epidemiol; 2017 Oct; 186(7):762-770. PubMed ID: 28978192 [TBL] [Abstract][Full Text] [Related]
2. Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. McAllister K; Mechanic LE; Amos C; Aschard H; Blair IA; Chatterjee N; Conti D; Gauderman WJ; Hsu L; Hutter CM; Jankowska MM; Kerr J; Kraft P; Montgomery SB; Mukherjee B; Papanicolaou GJ; Patel CJ; Ritchie MD; Ritz BR; Thomas DC; Wei P; Witte JS Am J Epidemiol; 2017 Oct; 186(7):753-761. PubMed ID: 28978193 [TBL] [Abstract][Full Text] [Related]
3. Complete effect-profile assessment in association studies with multiple genetic and multiple environmental factors. Wang Z; Maity A; Luo Y; Neely ML; Tzeng JY Genet Epidemiol; 2015 Feb; 39(2):122-33. PubMed ID: 25538034 [TBL] [Abstract][Full Text] [Related]
4. Using Genetic Marginal Effects to Study Gene-Environment Interactions with GWAS Data. Verhulst B; Pritikin JN; Clifford J; Prom-Wormley E Behav Genet; 2021 May; 51(3):358-373. PubMed ID: 33899139 [TBL] [Abstract][Full Text] [Related]
6. A scalable and robust variance components method reveals insights into the architecture of gene-environment interactions underlying complex traits. Pazokitoroudi A; Liu Z; Dahl A; Zaitlen N; Rosset S; Sankararaman S Am J Hum Genet; 2024 Jul; 111(7):1462-1480. PubMed ID: 38866020 [TBL] [Abstract][Full Text] [Related]
7. Lessons Learned From Past Gene-Environment Interaction Successes. Ritz BR; Chatterjee N; Garcia-Closas M; Gauderman WJ; Pierce BL; Kraft P; Tanner CM; Mechanic LE; McAllister K Am J Epidemiol; 2017 Oct; 186(7):778-786. PubMed ID: 28978190 [TBL] [Abstract][Full Text] [Related]
8. Accounting for genetic effect heterogeneity in fine-mapping and improving power to detect gene-environment interactions with SharePro. Zhang W; Sladek R; Li Y; Najafabadi H; Dupuis J Nat Commun; 2024 Oct; 15(1):9374. PubMed ID: 39478020 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide gene-environment interaction in depression: A systematic evaluation of candidate genes: The childhood trauma working-group of PGC-MDD. Van der Auwera S; Peyrot WJ; Milaneschi Y; Hertel J; Baune B; Breen G; Byrne E; Dunn EC; Fisher H; Homuth G; Levinson D; Lewis C; Mills N; Mullins N; Nauck M; Pistis G; Preisig M; Rietschel M; Ripke S; Sullivan P; Teumer A; Völzke H; ; Boomsma DI; Wray NR; Penninx B; Grabe H Am J Med Genet B Neuropsychiatr Genet; 2018 Jan; 177(1):40-49. PubMed ID: 29159863 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide contribution of genotype by environment interaction to variation of diabetes-related traits. Zheng JS; Arnett DK; Lee YC; Shen J; Parnell LD; Smith CE; Richardson K; Li D; Borecki IB; Ordovás JM; Lai CQ PLoS One; 2013; 8(10):e77442. PubMed ID: 24204828 [TBL] [Abstract][Full Text] [Related]
11. Leveraging phenotypic variability to identify genetic interactions in human phenotypes. Marderstein AR; Davenport ER; Kulm S; Van Hout CV; Elemento O; Clark AG Am J Hum Genet; 2021 Jan; 108(1):49-67. PubMed ID: 33326753 [TBL] [Abstract][Full Text] [Related]
12. Inferring Gene-by-Environment Interactions with a Bayesian Whole-Genome Regression Model. Kerin M; Marchini J Am J Hum Genet; 2020 Oct; 107(4):698-713. PubMed ID: 32888427 [TBL] [Abstract][Full Text] [Related]
13. HisCoM-G×E: Hierarchical Structural Component Analysis of Gene-Based Gene-Environment Interactions. Choi S; Lee S; Huh I; Hwang H; Park T Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32937825 [TBL] [Abstract][Full Text] [Related]
14. A Varying Coefficient Model to Jointly Test Genetic and Gene-Environment Interaction Effects. Zhou Z; Ku HC; Manning SE; Zhang M; Xing C Behav Genet; 2023 Jul; 53(4):374-382. PubMed ID: 36622576 [TBL] [Abstract][Full Text] [Related]
15. Efficient generalized least squares method for mixed population and family-based samples in genome-wide association studies. Li J; Yang J; Levin AM; Montgomery CG; Datta I; Trudeau S; Adrianto I; McKeigue P; Iannuzzi MC; Rybicki BA Genet Epidemiol; 2014 Jul; 38(5):430-8. PubMed ID: 24845555 [TBL] [Abstract][Full Text] [Related]
16. A robust model-free approach for rare variants association studies incorporating gene-gene and gene-environmental interactions. Fan R; Lo SH PLoS One; 2013; 8(12):e83057. PubMed ID: 24358248 [TBL] [Abstract][Full Text] [Related]
17. Detecting rare haplotype-environment interaction with logistic Bayesian LASSO. Biswas S; Xia S; Lin S Genet Epidemiol; 2014 Jan; 38(1):31-41. PubMed ID: 24272913 [TBL] [Abstract][Full Text] [Related]
18. A data-smoothing approach to explore and test gene-environment interaction in case-parent trios. Shin JH; Infante-Rivard C; McNeney B; Graham J Stat Appl Genet Mol Biol; 2014 Apr; 13(2):159-71. PubMed ID: 24413219 [TBL] [Abstract][Full Text] [Related]
19. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Cattaneo A; Cattane N; Malpighi C; Czamara D; Suarez A; Mariani N; Kajantie E; Luoni A; Eriksson JG; Lahti J; Mondelli V; Dazzan P; Räikkönen K; Binder EB; Riva MA; Pariante CM Mol Psychiatry; 2018 Nov; 23(11):2192-2208. PubMed ID: 29302075 [TBL] [Abstract][Full Text] [Related]
20. A unified powerful set-based test for sequencing data analysis of GxE interactions. Su YR; Di CZ; Hsu L; Biostatistics; 2017 Jan; 18(1):119-131. PubMed ID: 27474101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]