These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 28978449)

  • 21. Towards microwave imaging of cells.
    Kelleci M; Aydogmus H; Aslanbas L; Erbil SO; Hanay MS
    Lab Chip; 2018 Jan; 18(3):463-472. PubMed ID: 29244051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cells Under Stress: An Inertial-Shear Microfluidic Determination of Cell Behavior.
    Armistead FJ; Gala De Pablo J; Gadêlha H; Peyman SA; Evans SD
    Biophys J; 2019 Mar; 116(6):1127-1135. PubMed ID: 30799072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis.
    Li SS; Xue CD; Li YJ; Chen XM; Zhao Y; Qin KR
    Electrophoresis; 2024 Jul; 45(13-14):1212-1232. PubMed ID: 37909658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young's Modulus of Single Cells.
    Wang K; Zhao Y; Chen D; Huang C; Fan B; Long R; Hsieh CH; Wang J; Wu MH; Chen J
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microviscoelasticity of the apical cell surface of human umbilical vein endothelial cells (HUVEC) within confluent monolayers.
    Feneberg W; Aepfelbacher M; Sackmann E
    Biophys J; 2004 Aug; 87(2):1338-50. PubMed ID: 15298936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Systematic Study of Size Correlation and Young's Modulus Sensitivity for Cellular Mechanical Phenotyping by Microfluidic Approaches.
    Liang M; Zhong J; Ai Y
    Adv Healthc Mater; 2022 Oct; 11(19):e2200628. PubMed ID: 35852381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-Time Deformability Cytometry: Label-Free Functional Characterization of Cells.
    Herbig M; Kräter M; Plak K; Müller P; Guck J; Otto O
    Methods Mol Biol; 2018; 1678():347-369. PubMed ID: 29071686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A scalable filtration method for high throughput screening based on cell deformability.
    Gill NK; Ly C; Nyberg KD; Lee L; Qi D; Tofig B; Reis-Sobreiro M; Dorigo O; Rao J; Wiedemeyer R; Karlan B; Lawrenson K; Freeman MR; Damoiseaux R; Rowat AC
    Lab Chip; 2019 Jan; 19(2):343-357. PubMed ID: 30566156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unbiased High-Precision Cell Mechanical Measurements with Microconstrictions.
    Lange JR; Metzner C; Richter S; Schneider W; Spermann M; Kolb T; Whyte G; Fabry B
    Biophys J; 2017 Apr; 112(7):1472-1480. PubMed ID: 28402889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic micropipette aspiration for measuring the deformability of single cells.
    Guo Q; Park S; Ma H
    Lab Chip; 2012 Aug; 12(15):2687-95. PubMed ID: 22622288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ single cell detection via microfluidic magnetic bead assay.
    Liu F; Kc P; Zhang G; Zhe J
    PLoS One; 2017; 12(2):e0172697. PubMed ID: 28222140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels.
    Lee LM; Liu AP
    Lab Chip; 2015 Jan; 15(1):264-73. PubMed ID: 25361042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel.
    Raj A; Dixit M; Doble M; Sen AK
    Lab Chip; 2017 Oct; 17(21):3704-3716. PubMed ID: 28983550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical Biomarkers of Disease Progression: On-Chip Monitoring of Changes in Mechanobiology of Colorectal Cancer Cells.
    Armistead FJ; Gala De Pablo J; Gadêlha H; Peyman SA; Evans SD
    Sci Rep; 2020 Feb; 10(1):3254. PubMed ID: 32094413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rheology of rounded mammalian cells over continuous high-frequencies.
    Fläschner G; Roman CI; Strohmeyer N; Martinez-Martin D; Müller DJ
    Nat Commun; 2021 May; 12(1):2922. PubMed ID: 34006873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell Deformation by Single-beam Acoustic Trapping: A Promising Tool for Measurements of Cell Mechanics.
    Hwang JY; Kim J; Park JM; Lee C; Jung H; Lee J; Shung KK
    Sci Rep; 2016 Jun; 6():27238. PubMed ID: 27273365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.