BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 28978530)

  • 21. Inhibition of Transglutaminase 2 Reduces Peritoneal Injury in a Chlorhexidine-Induced Peritoneal Fibrosis Model.
    Kunoki S; Tatsukawa H; Sakai Y; Kinashi H; Kariya T; Suzuki Y; Mizuno M; Yamaguchi M; Sasakura H; Ikeno M; Takeuchi K; Ishimoto T; Hitomi K; Ito Y
    Lab Invest; 2023 Apr; 103(4):100050. PubMed ID: 36870292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acidic organelles mediate TGF-β1-induced cellular fibrosis via (pro)renin receptor and vacuolar ATPase trafficking in human peritoneal mesothelial cells.
    Oba-Yabana I; Mori T; Takahashi C; Hirose T; Ohsaki Y; Kinugasa S; Muroya Y; Sato E; Nguyen G; Piedagnel R; Ronco PM; Totsune K; Ito S
    Sci Rep; 2018 Feb; 8(1):2648. PubMed ID: 29422602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Connective tissue growth factor is correlated with peritoneal lymphangiogenesis.
    Kinashi H; Toda N; Sun T; Nguyen TQ; Suzuki Y; Katsuno T; Yokoi H; Aten J; Mizuno M; Maruyama S; Yanagita M; Goldschmeding R; Ito Y
    Sci Rep; 2019 Aug; 9(1):12175. PubMed ID: 31434958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis.
    Washida N; Wakino S; Tonozuka Y; Homma K; Tokuyama H; Hara Y; Hasegawa K; Minakuchi H; Fujimura K; Hosoya K; Hayashi K; Itoh H
    Nephrol Dial Transplant; 2011 Sep; 26(9):2770-9. PubMed ID: 21378147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patients with encapsulating peritoneal sclerosis have increased peritoneal expression of connective tissue growth factor (CCN2), transforming growth factor-β1, and vascular endothelial growth factor.
    Abrahams AC; Habib SM; Dendooven A; Riser BL; van der Veer JW; Toorop RJ; Betjes MG; Verhaar MC; Watson CJ; Nguyen TQ; Boer WH
    PLoS One; 2014; 9(11):e112050. PubMed ID: 25384022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [High glucose dialysate enhances peritoneal fibrosis through upregulating glucose transporters GLUT1 and SGLT1].
    Hong M; Nie Z; Chen Z; Yu X; Bao B
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 May; 45(6):598-606. PubMed ID: 28247603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The proto-oncogene c-Fos transcriptionally regulates VEGF production during peritoneal inflammation.
    Catar R; Witowski J; Wagner P; Annett Schramm I; Kawka E; Philippe A; Dragun D; Jörres A
    Kidney Int; 2013 Dec; 84(6):1119-28. PubMed ID: 23760290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis.
    Yokoi H; Kasahara M; Mori K; Ogawa Y; Kuwabara T; Imamaki H; Kawanishi T; Koga K; Ishii A; Kato Y; Mori KP; Toda N; Ohno S; Muramatsu H; Muramatsu T; Sugawara A; Mukoyama M; Nakao K
    Kidney Int; 2012 Jan; 81(2):160-9. PubMed ID: 21881556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Therapeutic effect of 1,25(OH)2-VitaminD3 on fibrosis and angiogenesis of peritoneum induced by chlorhexidine.
    Da J; Yang Y; Dong R; Shen Y; Zha Y
    Biomed Pharmacother; 2020 Sep; 129():110431. PubMed ID: 32585450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of CTGF ameliorates peritoneal fibrosis through suppression of fibroblast and myofibroblast accumulation and angiogenesis.
    Sakai N; Nakamura M; Lipson KE; Miyake T; Kamikawa Y; Sagara A; Shinozaki Y; Kitajima S; Toyama T; Hara A; Iwata Y; Shimizu M; Furuichi K; Kaneko S; Tager AM; Wada T
    Sci Rep; 2017 Jul; 7(1):5392. PubMed ID: 28710437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of low glucose degradation products peritoneal dialysis fluid on the peritoneal fibrosis and vascularization in a chronic rat model.
    Kim CD; Kwon HM; Park SH; Oh EJ; Kim MH; Choi SY; Choi MJ; Kim IS; Park MS; Kim YJ; Kim YL
    Ther Apher Dial; 2007 Feb; 11(1):56-64. PubMed ID: 17309576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-β1 signaling.
    Ueno T; Nakashima A; Doi S; Kawamoto T; Honda K; Yokoyama Y; Doi T; Higashi Y; Yorioka N; Kato Y; Kohno N; Masaki T
    Kidney Int; 2013 Aug; 84(2):297-307. PubMed ID: 23486522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MiR-200a negatively regulates TGF-β
    Guo R; Hao G; Bao Y; Xiao J; Zhan X; Shi X; Luo L; Zhou J; Chen Q; Wei X
    Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1087-F1095. PubMed ID: 29357421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blockade of thrombospondin-1 ameliorates high glucose-induced peritoneal fibrosis through downregulation of TGF-β1/Smad3 signaling pathway.
    Jiang N; Zhang Z; Shao X; Jing R; Wang C; Fang W; Mou S; Ni Z
    J Cell Physiol; 2020 Jan; 235(1):364-379. PubMed ID: 31236971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of new peritoneal dialysis solutions, pyridoxamine and AT1 receptor blocker, on TGF-beta1 and VEGF expression in rat peritoneal mesothelial cells.
    Mizuiri S; Ohashi Y; Hemmi H; Arita M; Yamada K; Aoki T; Miyagi M; Sakai K; Aikawa A
    Am J Nephrol; 2009; 30(3):295-302. PubMed ID: 19546527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nebivolol, a β1-adrenergic blocker, protects from peritoneal membrane damage induced during peritoneal dialysis.
    Liappas G; González-Mateo G; Aguirre AR; Abensur H; Albar-Vizcaino P; Parra EG; Sandoval P; Ramírez LG; Del Peso G; Acedo JM; Bajo MA; Selgas R; Sánchez Tomero JA; López-Cabrera M; Aguilera A
    Oncotarget; 2016 May; 7(21):30133-46. PubMed ID: 27102153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aliskiren ameliorates chlorhexidine digluconate-induced peritoneal fibrosis in rats.
    Ke CY; Lee CC; Lee CJ; Subeq YM; Lee RP; Hsu BG
    Eur J Clin Invest; 2010 Apr; 40(4):301-9. PubMed ID: 20486991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dipeptide alanyl-glutamine ameliorates peritoneal fibrosis and attenuates IL-17 dependent pathways during peritoneal dialysis.
    Ferrantelli E; Liappas G; Vila Cuenca M; Keuning ED; Foster TL; Vervloet MG; Lopéz-Cabrera M; Beelen RH
    Kidney Int; 2016 Mar; 89(3):625-35. PubMed ID: 26880457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beneficial effects of enalapril on chlorhexidine digluconate-induced liver peritoneal fibrosis in rats.
    Lee CJ; Subeq YM; Lee RP; Ke CY; Lin NT; Hsu BG
    Chin J Physiol; 2011 Aug; 54(4):225-34. PubMed ID: 22129820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis.
    Fan YP; Hsia CC; Tseng KW; Liao CK; Fu TW; Ko TL; Chiu MM; Shih YH; Huang PY; Chiang YC; Yang CC; Fu YS
    Stem Cells Transl Med; 2016 Feb; 5(2):235-47. PubMed ID: 26718649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.