These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 28978636)

  • 1. EZH2 Modifies Sunitinib Resistance in Renal Cell Carcinoma by Kinome Reprogramming.
    Adelaiye-Ogala R; Budka J; Damayanti NP; Arrington J; Ferris M; Hsu CC; Chintala S; Orillion A; Miles KM; Shen L; Elbanna M; Ciamporcero E; Arisa S; Pettazzoni P; Draetta GF; Seshadri M; Hancock B; Radovich M; Kota J; Buck M; Keilhack H; McCarthy BP; Persohn SA; Territo PR; Zang Y; Irudayaraj J; Tao WA; Hollenhorst P; Pili R
    Cancer Res; 2017 Dec; 77(23):6651-6666. PubMed ID: 28978636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sunitinib dose escalation overcomes transient resistance in clear cell renal cell carcinoma and is associated with epigenetic modifications.
    Adelaiye R; Ciamporcero E; Miles KM; Sotomayor P; Bard J; Tsompana M; Conroy D; Shen L; Ramakrishnan S; Ku SY; Orillion A; Prey J; Fetterly G; Buck M; Chintala S; Bjarnason GA; Pili R
    Mol Cancer Ther; 2015 Feb; 14(2):513-22. PubMed ID: 25519701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma.
    Huang D; Ding Y; Li Y; Luo WM; Zhang ZF; Snider J; Vandenbeldt K; Qian CN; Teh BT
    Cancer Res; 2010 Feb; 70(3):1053-62. PubMed ID: 20103629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of IL13RA2 in Sunitinib Resistance in Clear Cell Renal Cell Carcinoma.
    Shibasaki N; Yamasaki T; Kanno T; Arakaki R; Sakamoto H; Utsunomiya N; Inoue T; Tsuruyama T; Nakamura E; Ogawa O; Kamba T
    PLoS One; 2015; 10(6):e0130980. PubMed ID: 26114873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models.
    Ciamporcero E; Miles KM; Adelaiye R; Ramakrishnan S; Shen L; Ku S; Pizzimenti S; Sennino B; Barrera G; Pili R
    Mol Cancer Ther; 2015 Jan; 14(1):101-10. PubMed ID: 25381264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting renal cell carcinoma with a HIF-2 antagonist.
    Chen W; Hill H; Christie A; Kim MS; Holloman E; Pavia-Jimenez A; Homayoun F; Ma Y; Patel N; Yell P; Hao G; Yousuf Q; Joyce A; Pedrosa I; Geiger H; Zhang H; Chang J; Gardner KH; Bruick RK; Reeves C; Hwang TH; Courtney K; Frenkel E; Sun X; Zojwalla N; Wong T; Rizzi JP; Wallace EM; Josey JA; Xie Y; Xie XJ; Kapur P; McKay RM; Brugarolas J
    Nature; 2016 Nov; 539(7627):112-117. PubMed ID: 27595394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relevance of testing the efficacy of anti-angiogenesis treatments on cells derived from primary tumors: a new method for the personalized treatment of renal cell carcinoma.
    Grépin R; Ambrosetti D; Marsaud A; Gastaud L; Amiel J; Pedeutour F; Pagès G
    PLoS One; 2014; 9(3):e89449. PubMed ID: 24676409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma.
    Zhou L; Liu XD; Sun M; Zhang X; German P; Bai S; Ding Z; Tannir N; Wood CG; Matin SF; Karam JA; Tamboli P; Sircar K; Rao P; Rankin EB; Laird DA; Hoang AG; Walker CL; Giaccia AJ; Jonasch E
    Oncogene; 2016 May; 35(21):2687-97. PubMed ID: 26364599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEK inhibition abrogates sunitinib resistance in a renal cell carcinoma patient-derived xenograft model.
    Diaz-Montero CM; Mao FJ; Barnard J; Parker Y; Zamanian-Daryoush M; Pink JJ; Finke JH; Rini BI; Lindner DJ
    Br J Cancer; 2016 Oct; 115(8):920-928. PubMed ID: 27560553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular Adaptation to VEGF-Targeted Antiangiogenic Therapy Induces Evasive Resistance by Overproduction of Alternative Endothelial Cell Growth Factors in Renal Cell Carcinoma.
    Han KS; Raven PA; Frees S; Gust K; Fazli L; Ettinger S; Hong SJ; Kollmannsberger C; Gleave ME; So AI
    Neoplasia; 2015 Nov; 17(11):805-16. PubMed ID: 26678908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NGAL can alternately mediate sunitinib resistance in renal cell carcinoma.
    Yu DS; Wu CL; Ping SY; Huang YL; Shen KH
    J Urol; 2014 Aug; 192(2):559-66. PubMed ID: 24423438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of placental growth factor in renal cell carcinoma.
    Bessho H; Wong B; Huang D; Siew EY; Huang D; Tan J; Ong CK; Tan SY; Matsumoto K; Iwamura M; Teh BT
    Anticancer Res; 2015 Jan; 35(1):531-41. PubMed ID: 25550599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma.
    Huang D; Ding Y; Zhou M; Rini BI; Petillo D; Qian CN; Kahnoski R; Futreal PA; Furge KA; Teh BT
    Cancer Res; 2010 Feb; 70(3):1063-71. PubMed ID: 20103651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas6-Axl signaling in presence of Sunitinib is enhanced, diversified and sustained in renal tumor cells, resulting in tumor-progressive advantages.
    Gustafsson A; Fritz HKM; Dahlbäck B
    Exp Cell Res; 2017 Jun; 355(1):47-56. PubMed ID: 28327411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous targeting of Src kinase and receptor tyrosine kinase results in synergistic inhibition of renal cell carcinoma proliferation and migration.
    Bai L; Yang JC; Ok JH; Mack PC; Kung HJ; Evans CP
    Int J Cancer; 2012 Jun; 130(11):2693-702. PubMed ID: 21792888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dll4 blockade potentiates the anti-tumor effects of VEGF inhibition in renal cell carcinoma patient-derived xenografts.
    Miles KM; Seshadri M; Ciamporcero E; Adelaiye R; Gillard B; Sotomayor P; Attwood K; Shen L; Conroy D; Kuhnert F; Lalani AS; Thurston G; Pili R
    PLoS One; 2014; 9(11):e112371. PubMed ID: 25393540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic Targeting of Sunitinib-Induced AR Phosphorylation in Renal Cell Carcinoma.
    Adelaiye-Ogala R; Damayanti NP; Orillion AR; Arisa S; Chintala S; Titus MA; Kao C; Pili R
    Cancer Res; 2018 Jun; 78(11):2886-2896. PubMed ID: 29572225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the Vascular Response and Resistance to Sunitinib in Renal Cell Carcinoma
    Robinson SP; Boult JKR; Vasudev NS; Reynolds AR
    Cancer Res; 2017 Aug; 77(15):4127-4134. PubMed ID: 28566330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma: evidence from a xenograft study.
    Hammers HJ; Verheul HM; Salumbides B; Sharma R; Rudek M; Jaspers J; Shah P; Ellis L; Shen L; Paesante S; Dykema K; Furge K; Teh BT; Netto G; Pili R
    Mol Cancer Ther; 2010 Jun; 9(6):1525-35. PubMed ID: 20501804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preclinical Evidence That Trametinib Enhances the Response to Antiangiogenic Tyrosine Kinase Inhibitors in Renal Cell Carcinoma.
    Bridgeman VL; Wan E; Foo S; Nathan MR; Welti JC; Frentzas S; Vermeulen PB; Preece N; Springer CJ; Powles T; Nathan PD; Larkin J; Gore M; Vasudev NS; Reynolds AR
    Mol Cancer Ther; 2016 Jan; 15(1):172-83. PubMed ID: 26487278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.