These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1058 related articles for article (PubMed ID: 28978689)
21. Customized predictions of peptide-MHC binding and T-cell epitopes using EPIMHC. Molero-Abraham M; Lafuente EM; Reche P Methods Mol Biol; 2014; 1184():319-32. PubMed ID: 25048133 [TBL] [Abstract][Full Text] [Related]
22. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912 [TBL] [Abstract][Full Text] [Related]
23. Predicted MHC peptide binding promiscuity explains MHC class I 'hotspots' of antigen presentation defined by mass spectrometry eluted ligand data. Jappe EC; Kringelum J; Trolle T; Nielsen M Immunology; 2018 Jul; 154(3):407-417. PubMed ID: 29446062 [TBL] [Abstract][Full Text] [Related]
24. Epitope distribution in ordered and disordered protein regions - part A. T-cell epitope frequency, affinity and hydropathy. Mitić NS; Pavlović MD; Jandrlić DR J Immunol Methods; 2014 Apr; 406():83-103. PubMed ID: 24614036 [TBL] [Abstract][Full Text] [Related]
25. In silico and in vivo analysis of Toxoplasma gondii epitopes by correlating survival data with peptide-MHC-I binding affinities. Huang SY; Jensen MR; Rosenberg CA; Zhu XQ; Petersen E; Vorup-Jensen T Int J Infect Dis; 2016 Jul; 48():14-9. PubMed ID: 27109108 [TBL] [Abstract][Full Text] [Related]
26. Low HLA binding of diabetes-associated CD8+ T-cell epitopes is increased by post translational modifications. Sidney J; Vela JL; Friedrich D; Kolla R; von Herrath M; Wesley JD; Sette A BMC Immunol; 2018 Mar; 19(1):12. PubMed ID: 29562882 [TBL] [Abstract][Full Text] [Related]
27. Presentation and binding affinity of equine infectious anemia virus CTL envelope and matrix protein epitopes by an expressed equine classical MHC class I molecule. McGuire TC; Leib SR; Mealey RH; Fraser DG; Prieur DJ J Immunol; 2003 Aug; 171(4):1984-93. PubMed ID: 12902502 [TBL] [Abstract][Full Text] [Related]
28. Prediction of MHC class I binding peptides, using SVMHC. Dönnes P; Elofsson A BMC Bioinformatics; 2002 Sep; 3():25. PubMed ID: 12225620 [TBL] [Abstract][Full Text] [Related]
29. Interaction profiling of T-cell epitopes with MHC-class I molecules. Dash BP; Mukherjee S; Suhas VL; Chandra N Protein Pept Lett; 2007; 14(6):557-64. PubMed ID: 17627596 [TBL] [Abstract][Full Text] [Related]
30. Prediction of MHC class I binding peptides with a new feature encoding technique. Gök M; Özcerit AT Cell Immunol; 2012; 275(1-2):1-4. PubMed ID: 22531484 [TBL] [Abstract][Full Text] [Related]
31. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. Reynisson B; Barra C; Kaabinejadian S; Hildebrand WH; Peters B; Nielsen M J Proteome Res; 2020 Jun; 19(6):2304-2315. PubMed ID: 32308001 [TBL] [Abstract][Full Text] [Related]
32. An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries. Udaka K; Wiesmüller KH; Kienle S; Jung G; Tamamura H; Yamagishi H; Okumura K; Walden P; Suto T; Kawasaki T Immunogenetics; 2000 Aug; 51(10):816-28. PubMed ID: 10970096 [TBL] [Abstract][Full Text] [Related]
34. T cell responses to bluetongue virus are directed against multiple and identical CD4+ and CD8+ T cell epitopes from the VP7 core protein in mouse and sheep. Rojas JM; Rodríguez-Calvo T; Peña L; Sevilla N Vaccine; 2011 Sep; 29(40):6848-57. PubMed ID: 21807057 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. Lin HH; Ray S; Tongchusak S; Reinherz EL; Brusic V BMC Immunol; 2008 Mar; 9():8. PubMed ID: 18366636 [TBL] [Abstract][Full Text] [Related]
36. Invariant chain as a vehicle to load antigenic peptides on human MHC class I for cytotoxic T-cell activation. Wälchli S; Kumari S; Fallang LE; Sand KM; Yang W; Landsverk OJ; Bakke O; Olweus J; Gregers TF Eur J Immunol; 2014 Mar; 44(3):774-84. PubMed ID: 24293164 [TBL] [Abstract][Full Text] [Related]
37. OETMAP: a new feature encoding scheme for MHC class I binding prediction. Gök M; Özcerit AT Mol Cell Biochem; 2012 Jan; 359(1-2):67-72. PubMed ID: 21805091 [TBL] [Abstract][Full Text] [Related]
38. Selection of T-cell epitopes from foot-and-mouth disease virus reflects the binding affinity to different cattle MHC class II molecules. Haghparast A; Wauben MH; Grosfeld-Stulemeyer MC; van Kooten P; Hensen EJ Immunogenetics; 2000 Jul; 51(8-9):733-42. PubMed ID: 10941845 [TBL] [Abstract][Full Text] [Related]
39. NetTepi: an integrated method for the prediction of T cell epitopes. Trolle T; Nielsen M Immunogenetics; 2014 Aug; 66(7-8):449-56. PubMed ID: 24863339 [TBL] [Abstract][Full Text] [Related]
40. Role of peptide processing predictions in T cell epitope identification: contribution of different prediction programs. Calis JJ; Reinink P; Keller C; Kloetzel PM; Keşmir C Immunogenetics; 2015 Feb; 67(2):85-93. PubMed ID: 25475908 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]