These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28978943)

  • 1. Global misregulation of genes largely uncoupled to DNA methylome epimutations characterizes a congenital overgrowth syndrome.
    Chen Z; Hagen DE; Ji T; Elsik CG; Rivera RM
    Sci Rep; 2017 Oct; 7(1):12667. PubMed ID: 28978943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction.
    Chen Z; Hagen DE; Elsik CG; Ji T; Morris CJ; Moon LE; Rivera RM
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4618-23. PubMed ID: 25825726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered microRNA expression profiles in large offspring syndrome and Beckwith-Wiedemann syndrome.
    Li Y; Hagen DE; Ji T; Bakhtiarizadeh MR; Frederic WM; Traxler EM; Kalish JM; Rivera RM
    Epigenetics; 2019 Sep; 14(9):850-876. PubMed ID: 31144574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome.
    Li Y; Sena Lopes J; Coy-Fuster P; Rivera RM
    Epigenetics; 2022 Nov; 17(11):1477-1496. PubMed ID: 35466858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann.
    Chen Z; Robbins KM; Wells KD; Rivera RM
    Epigenetics; 2013 Jun; 8(6):591-601. PubMed ID: 23751783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome.
    Hori N; Nagai M; Hirayama M; Hirai T; Matsuda K; Hayashi M; Tanaka T; Ozawa T; Horike S
    Anim Reprod Sci; 2010 Dec; 122(3-4):303-12. PubMed ID: 21035970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies.
    Lim D; Bowdin SC; Tee L; Kirby GA; Blair E; Fryer A; Lam W; Oley C; Cole T; Brueton LA; Reik W; Macdonald F; Maher ER
    Hum Reprod; 2009 Mar; 24(3):741-7. PubMed ID: 19073614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-locus imprinting disturbances of Beckwith-Wiedemann and Large offspring syndrome/Abnormal offspring syndrome: A brief review.
    Mangiavacchi PM; Caldas-Bussiere MC; Mendonça MDS; Dias AJB; Rios ÁFL
    Theriogenology; 2021 Oct; 173():193-201. PubMed ID: 34399383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overrepresentation of pregnancies conceived by artificial reproductive technology in prenatally identified fetuses with Beckwith-Wiedemann syndrome.
    Johnson JP; Beischel L; Schwanke C; Styren K; Crunk A; Schoof J; Elias AF
    J Assist Reprod Genet; 2018 Jun; 35(6):985-992. PubMed ID: 29936652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The counterpart congenital overgrowth syndromes Beckwith-Wiedemann Syndrome in human and large offspring syndrome in bovine involve alterations in DNA methylation, transcription, and chromatin configuration.
    Li Y; Xiao P; Boadu F; Goldkamp AK; Nirgude S; Cheng J; Hagen DE; Kalish JM; Rivera RM
    medRxiv; 2023 Dec; ():. PubMed ID: 38168424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies.
    Hiura H; Okae H; Miyauchi N; Sato F; Sato A; Van De Pette M; John RM; Kagami M; Nakai K; Soejima H; Ogata T; Arima T
    Hum Reprod; 2012 Aug; 27(8):2541-8. PubMed ID: 22674207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allele-specific aberration of imprinted domain chromosome architecture associates with large offspring syndrome.
    Li Y; Boadu F; Highsmith MR; Hagen DE; Cheng J; Rivera RM
    iScience; 2022 May; 25(5):104269. PubMed ID: 35542046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-locus DNA methylation analysis of imprinted genes in cattle from somatic cell nuclear transfer.
    Mangiavacchi PM; Caldas-Bussiere MC; Mendonça MDS; Rumpf R; Lemos Júnior PES; Alves CS; Carneiro WDS; Dias AJB; Rios ÁFL
    Theriogenology; 2022 Jul; 186():95-107. PubMed ID: 35439626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive and quantitative multilocus methylation analysis reveals the susceptibility of specific imprinted differentially methylated regions to aberrant methylation in Beckwith-Wiedemann syndrome with epimutations.
    Maeda T; Higashimoto K; Jozaki K; Yatsuki H; Nakabayashi K; Makita Y; Tonoki H; Okamoto N; Takada F; Ohashi H; Migita M; Kosaki R; Matsubara K; Ogata T; Matsuo M; Hamasaki Y; Ohtsuka Y; Nishioka K; Joh K; Mukai T; Hata K; Soejima H
    Genet Med; 2014 Dec; 16(12):903-12. PubMed ID: 24810686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overgrowth Syndrome.
    Li Y; Donnelly CG; Rivera RM
    Vet Clin North Am Food Anim Pract; 2019 Jul; 35(2):265-276. PubMed ID: 31103180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome.
    Gaston V; Le Bouc Y; Soupre V; Burglen L; Donadieu J; Oro H; Audry G; Vazquez MP; Gicquel C
    Eur J Hum Genet; 2001 Jun; 9(6):409-18. PubMed ID: 11436121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maternal control of genomic imprint maintenance.
    Denomme MM; Mann MR
    Reprod Biomed Online; 2013 Dec; 27(6):629-36. PubMed ID: 24125946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders.
    Soejima H; Higashimoto K
    J Hum Genet; 2013 Jul; 58(7):402-9. PubMed ID: 23719190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetics, genomic imprinting and assisted reproductive technology.
    Le Bouc Y; Rossignol S; Azzi S; Steunou V; Netchine I; Gicquel C
    Ann Endocrinol (Paris); 2010 May; 71(3):237-8. PubMed ID: 20362968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assisted reproductive technology represents a possible risk factor for development of epimutation-mediated imprinting disorders for mothers aged ≥ 30 years.
    Hara-Isono K; Matsubara K; Mikami M; Arima T; Ogata T; Fukami M; Kagami M
    Clin Epigenetics; 2020 Jul; 12(1):111. PubMed ID: 32698867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.